Convergence analysis of a vertex-centered finite volume scheme for a copper heap leaching model
Convergence analysis of a vertex-centered finite volume scheme for a copper heap leaching model
Authors
Cariaga López, Emilio
Concha, Fernando
Sorin Pop, Luliu
Sepúlveda, Mauricio
Concha, Fernando
Sorin Pop, Luliu
Sepúlveda, Mauricio
Profesor Guía
Authors
Date
2012-03-07
Datos de publicación:
10.1002/mma.1234
Mathematical Methods in the Applied Sciences, Vol.33, N°9, 1059-1077, 2010
Mathematical Methods in the Applied Sciences, Vol.33, N°9, 1059-1077, 2010
Tipo de recurso
Artículo de Revista
Facultad de Ingeniería
Keywords
Ingeniería matemática
Materia geográfica
Collections
Abstract
In this paper a two-dimensional solute transport model is considered to simulate the leaching of copper ore tailing
using sulfuric acid as the leaching agent. The mathematical model consists in a system of differential equations: two
diffusion–convection-reaction equations with Neumann boundary conditions, and one ordinary differential equation.
The numerical scheme consists in a combination of finite volume and finite element methods. A Godunov scheme is
used for the convection term and an P1-FEM for the diffusion term. The convergence analysis is based on standard
compactness results in L2. Some numerical examples illustrate the effectiveness of the scheme.