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Convergence analysis of a vertex-centered
finite volume scheme for a copper heap
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In this paper a two-dimensional solute transport model is considered to simulate the leaching of copper ore tailing
using sulfuric acid as the leaching agent. The mathematical model consists in a system of differential equations: two
diffusion–convection-reaction equations with Neumann boundary conditions, and one ordinary differential equation.
The numerical scheme consists in a combination of finite volume and finite element methods. A Godunov scheme is
used for the convection term and an P1-FEM for the diffusion term. The convergence analysis is based on standard
compactness results in L2. Some numerical examples illustrate the effectiveness of the scheme. Copyright © 2009 John
Wiley & Sons, Ltd.
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1. Introduction

Heap leaching is a hydro-metallurgical process used for oxides ores with several industrial mining applications including copper,
zinc, gold and caliche minerals. In the case of copper production, a leaching model can be considered as a flow of two fluids phases
(liquid and gaseous), coupled to the transport of components (sulfuric acid, copper ions, water, air and oxygen) in a porous medium.
Systems of diffusion reaction equations modeling fluid flow and physicochemical reactions for the heap leaching process of copper
ores have been studied by several authors (see e.g. [1--5]). Subsequently, the advent (in 1980) of the process of agglomeration and
acid curing followed by nonflooding or trickle leaching, known as the Thin-Layer (TL) Leaching process, permitted several Chilean
mines to be brought into commercial operation. This process had been patented in 1981 by Esteban Domic and described in details
in his textbook [6].

There are two phenomena of interest: the fluid flow and the physicochemical reactions. These two phenomena can be studied
separately if the leaching process does not influence the flow. In other words, the flow in a heap can be decoupled from the
chemistry. In this work we focus on the study of the transport equation and assume that the fluid velocity, the pressure and
the saturation are given. Assuming that the pressure in the gaseous phase is constant, the fluid flow is modeled by the Richards
equation (see [7]). The heap leaching of copper ore coupled with a two-phase flow model was investigated by Cariaga et al. [8, 9].
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Coupled models for reactive porous media flows in unsaturated media are investigated in [10, 11], providing error estimates and
the convergence of a Newton scheme for an Euler implicit, mixed finite element discretization.

Numerical methods for the transport equations including the physicochemical reactions phenomena are studied by several
authors in different contexts. Specifically, a cell-centered finite volume method is investigated in [12], where numerical simulations
of a two-dimensional PDE system for the two-phase flow in a porous medium are given (see also [3]). The work of Muñoz et al. [1] is
devoted to the parameter identification and experimental validation of the two-dimensional solute transport model. With respect to
a bioleaching model, we mention the work of Casas et al. [2]. Furthermore, Mellado et al. [13, 14] proposed an analytical–numerical
method for solving a model of the heap leaching problem.

In the present work, we study the convergence of a vertex-centered finite volume scheme for a system formed by a convection–
diffusion-reaction equation and an ordinary differential equation. This system is complemented with nonhomogeneous flux boundary
conditions, which correspond to the physical behavior of the irrigation and infiltration processes in heap leaching. This system of
heap leaching transport equations is very similar to that of [12], which was derived from the compositional flow model considered,
for instance, in [15]. Specifically we consider the following system:

�tu1 +∇ ·(�1(u1)v−D∇�1(u1)) = �1(u1) (1)

�tu2 +∇ ·(�2(u2)v−D∇�2(u2)) = �2(u1, u3) (2)

�t(�(u2)+u3) = �3(u1, u3) (3)

defined in the bounded spatial domain �⊂R2 having a Lipschitz boundary �� and representing the transversal cut of the heap,
and for t ∈ (0, T] for some T>0. Here u1, u2 and u3 are unknown concentrations of the sulfuric acid and copper in both liquid and
solid phases. Further �1, �2, �1, �2, �3 and � are known nonlinear functions expressing the sorption isotherm model (Freundlich
isotherm [16] or Langmuir isotherm [17]). The vector v is the velocity of the fluid flow that is assumed to be known, while D is
the dispersion–diffusion tensor. The diffusion in (1) and (2) may degenerate. Specifically, the physically relevant cases �′

1(0)=0 or
�′

2(0)=0 are allowed here.
In this paper we consider a vertex-centered finite volume method for the numerical approximation of the system (1)–(3). It

combines the upwind Godunov approach for the convective term, with the P1 finite element scheme for the diffusive term. This
method was also applied by Afif and Amaziane [18], for a nonlinear and degenerate convection–diffusion equation without reaction
term. It is known that for triangular meshes, the discretization of a Laplacian by the piecewise linear conforming finite element
method is equivalent to the vertex-centered finite volume method [18, 19], which is also named the box scheme [20, 21], the finite
volume element scheme [22], or the control volume finite element scheme [23], see [20, Lemma 3].

In the present heap leaching model, the diffusion is nonlinear and degenerate whenever the volumetric concentration is equal to
zero. Therefore the solution may lack regularity, raising also particular difficulties related to the convergence of the approximation.
Here, the convergence is obtained by compactness arguments, based on a priori estimates in L∞ and L2. In the absence of convective
terms, rigorous error estimates are obtained in [24] for a similar scheme.

The paper is organized as follows. In Section 2 we describe the compositional flow model for the volumetric concentration of
sulfuric acid in the liquid phase and for the copper ions in the liquid and solid phase. Section 3 gives the mathematical background
of the model, including the definition of a weak solution. In Section 4 we introduce the finite volume scheme, where a Godunov
scheme is used for the approximation of the convective term, and a standard P1-FEM for the diffusive term. Using L∞ and L2

estimates, in Sections 5 and 6 we prove the main convergence results. These are obtained for the sulfuric acid equation, as well as
for the copper system. Finally, in Section 7 we present several computational experiments.

2. The compositional flow model

2.1. The heap

The heap is a homogeneous porous medium consisting of fragmented ore material. It has a trapezoidal shape and is irrigated on
the top with a diluted sulfuric acid solution. The copper contained in the ore is desorbed and dissolved into the acid solution. The
solute is then transported through the heap. In this way the copper is leached out of the heap and collected at the bottom for a
later separation.

The flow in the irrigation process is unsaturated, involving the presence of two phases (liquid and gas). This flow is the transporting
mechanism for the copper, see also Figure 1. This situation is modeled by a two-phase–two-component system in the porous medium
(the heap). We refer to [25, 26] for more details on mathematical models for multiphase, multicomponent flow in porous media.

2.2. The fluid flow

In what follows we assume that the pressure of the gaseous phase pn is constant in time and space. Therefore the flow is modeled
by the Richards equation ([25, 26]. In a similar context, the two-phase flow model is considered in [9, 27, 28]). We refer to [29] for a
more detailed discussion on the two-phase flow equations in the context of heap leaching operations.

Furthermore we assume that the chemical processes do not affect the flow; therefore, the flow problem can be decoupled from
the component transport. Denoting by � the porosity of the medium, by solving the Richards equation one can determine the liquid
saturation sw , or the liquid content �w :=�sw , before considering the component transport problem. Consequently, the velocity of
the liquid phase vw is given by the Darcy law. In what follows we assume sw , �w and vw as known quantities depending on time
and space.
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Figure 1. Mathematical domain.

2.3. Component equations

The dissolution process is described by the following reaction (see [1, 6, 7]):

MinOxCu(s) +2H+
(aq) →Cu2+

(aq) +H2O(l)

where MinOxCu(s) is the copper oxide mineral, which is present in the ore. As a result, two solutes (Cu2+ and H2SO4) are obtained,
and these are transported through the unsaturated medium. This process is modeled by the convection–diffusion equation [25].
For the acid solute, we have

�
�t

(�s�s�a(CH2SO4 )+�wCH2SO4 )+∇ ·(CH2SO4 vw −D∇CH2SO4 )+�H2SO4 =0 (4)

where CH2SO4 is the volumetric concentration of the sulfuric acid in leach solution, while �s :=1−� is the volume ratio of the

solid part in the heap and �s is the ore bulk density. Further, �H2SO4 :=��wCH2SO4 [kg / m3 ·s] is the irreversible rate of solute
removal from the liquid solution, where � is a first-order reaction constant (consumption factor). The function �a =�a(CH2SO4 )
is the adsorption isotherm of the sulfuric acid. Finally, D stands for the dispersion–diffusion tensor. This tensor depends on the
fluid velocity vw , which we assumed as known. Therefore D is known here as well. For simplicity we assume that D is a constant,
symmetric and positive-definite tensor.

In the same way, the transport equation for the copper solute is given by

�
�t

(�s�s�c(CCu)+�wCCu)+∇ ·(CCuvw −D∇CCu)−�Cu =0 (5)

where CCu is the volumetric concentration of copper in the liquid phase, �Cu :=ke�s �sCH2SO4 SCu the irreversible rate of solute
added to the liquid solution, with ke being a first-order kinetic constant, and SCu the concentration of copper in the solid phase.
The function �c =�c(CCu) represents the copper adsorption isotherm.

Here we have neglected the interactions between copper and acid in the adsorption process, that is, we assume that �a
depends on CH2SO4 only, whereas �c depends only on CCu. This does not hold in general for known thermodynamic models of
multicomponent two-phase equilibrium isotherms, but can be assumed whenever the concentrations are small.

For the sorption isotherms ��(0)=0, with �=a, c (a=acid, b=copper) we assume:

(A�) �� is a smooth nondecreasing function satisfying ��(0)=0

Several isotherm functions have been proposed in the literature. The most common ones are the simple linear model ��(w) :=
kw, the Langmuir model ��(w) :=k1w / (1+k2w) or the Freundlich model ��(w) :=kwp, p>0 (see [15]). More general models of
multicomponent isotherms including interaction between molecules can be found in James et al. [30].

Finally, the change in the copper concentration in the solid phase follows the mass balance [1]:

�SCu

�t
+ke�wCH2SO4 SCu = �(�s�c(CCu))

�t
(6)

2.4. Initial and boundary conditions

We follow [1] and assume that the boundary of � contains three disjoint parts, ��=�i ∪�o ∪�t. �i is the input boundary (the
irrigation zone), where mass balance is assumed⎧⎨

⎩
(CH2SO4 vw −D∇CH2SO4 ) ·n=Cirr

H2SO4
vw ·n,

(CCuvw −D∇CCu) ·n=0,
x∈�i, t>0 (7)

Cirr
H2SO4

is the sulfuric acid concentration in the irrigation solution. Next, �o is the output boundary (the drainage zone), where again
by mass balance we have ⎧⎪⎨

⎪⎩
(CH2SO4 vw −D∇CH2SO4 ) ·n= (CH2SO4 −C

0

H2SO4
)vw ·n,

(CCuvw −D∇CCu) ·n= (CCu −C
0

Cu)vw ·n,

x∈�o, t>0 (8)
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The concentrations C0
H2SO4

and C0
Cu appearing previously are assumed to be constant and equal to the initial concentrations. �t is

the atmospheric boundary, where we assume that{
(CH2SO4 vw −D∇CH2SO4 ) ·n=0,

(CCuvw −D∇CCu) ·n=0,
x∈�t, t>0 (9)

Finally, the initial conditions are

CH2SO4 (x, 0)=C0
H2SO4

, CCu(x, 0)=C0
Cu, SCu(x, 0)=S

0

Cu, x∈� (10)

where S
0

Cu :=	s
cGs

c, with 	s
c being the leachable fraction of the total copper contained in the heap and Gs

c is the grade of the ore.

3. Mathematical framework and variational formulation

To simplify writing we define new variables. First we denote SCu by u3, and vw by v. Next we use two auxiliary functions 
1 and

2 to define

u1(x, t) := 
1(CH2SO4 (x, t)) :=�s�a(CH2SO4 (x, t))+�w(x, t)CH2SO4 (x, t)

u2(x, t) := 
2(CCu(x, t)) :=�s�c(CCu(x, t))+�w(x, t)CCu(x, t)

where �s =�s�s. By the assumption (A�), the functions �1(u1) :=
−1
1 (ui)=CH2SO4 and �2(u2) :=
−1

2 (u2)=CCu are well defined. In
this way, for the convergence analysis, we define the Model Problem A in the unknown u1:

�tu1 +∇ ·(�1(u1)v−D∇�1(u1))=−�w��1(u1) (11)

This corresponds to Equation (1) with �1(u1)=−�w��1(u1). Further, the Model Problem B in the unknowns u2 and u3 is defined as

�tu2 +∇ ·(�2(u2)v−D∇�2(u2)) = �w�ske�1(u1)u3 (12)

�u3

�t
+�wke�1(u1)u3 = �(�s�c(�2(u2)))

�t
(13)

This corresponds to the system (2)–(3) with �2(u1, u3)=�w�ske�1(u1)u3, �3(u1, u3)=−�wke�1(u1)u3 and �(u2)=−�s�c(�2(u2)).
Furthermore, the boundary conditions become

(�1(u1)v−D∇�1(u1)) ·n = g1(x, t, u1) (14)

(�2(u2)v−D∇�2(u2)) ·n = g2(x, t, u2) (15)

for all x ∈��, t>0. The particular form of the functions g1 and g2 depends on the boundary type: irrigation, drainage or atmospheric
zone. For simplifying the presentation, the analysis below is carried out for the homogeneous case, g1 ≡0 and g2 ≡0.

Finally, the initial conditions are

u1(x, 0)=u0
1(x), u2(x, 0)=u0

2(x), u3(x, 0)=u0
3(x) (16)

for all x ∈�, with u0
1 =
1(C0

H2SO4
), u0

2 =
2(C0
Cu) and u0

3 =S
0

Cu.

In the simplified notation, the compositional flow model reduces to finding the solutions (u1, u2, u3) of the system (11)–(13), with
the boundary conditions (14) and (15), and the initial condition (16).

Notice that the Model Problem A is uncoupled from the Model Problem B, and can be solved independently. Consequently,
the convergence analysis will be carried out separately. We further remark that the transport equations (11) and (12) could be
degenerate, as encountered, for example, in the case of a Freundlich isotherm model �(u) :=cup, with 0<p<1 (see [15, 18, 31]). This
mathematical property is in agreement with the physical behavior of u1 and u2 in heap leaching operations.

3.1. The weak formulation

Below we use the standard functional spaces L2(�), H1(�) and H−1(�), the dual space of H1
0(�). Let QT =�×(0, T] and

V :={v ∈C1(0, T; C2(�)); v(·; T)=0}

3.1.1. Model problem A. A weak solution u1 of the model problem A is a function u1 with �tu1 ∈L2(0, T; H−1(�)) and �1(u1)∈
L2(0, T; H1(�)), such that, for all �∈V∫

QT

(u1�t�+(�1(u1)v−D(v)∇�1(u1)) ·∇�−��w�1(u1)�)+
∫

�
uo

1�o =0

1
0
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Figure 2. Donald dual mesh.

3.1.2. Model problem B. A weak solution of the model problem B is a pair (u2, u3), with �tu2 ∈L2(0, T; H−1(�)) and �2(u2)∈
L2(0, T; H1(�)), such that, for all �∈V∫

QT

(u2�t�+(�2(u2)v−D(v)∇�2(u2)) ·∇�+ke�s�w�1(u1)u3�)+
∫

�
uo

2�o =0

as well as �tu3 ∈L2(0, T; H−1(�)), such that, for all 
∈V

∫
QT

�u3

�t

+

∫
QT

�wke�1(u1)u3
=
∫

QT

�(�s�2(�2(u2)))

�t



3.2. Existence and uniqueness

A mathematical analysis of the Model Problem A can be found, for example in [32, 33]. For the existence and uniqueness of the
Model Problem A, in the context of entropy solutions, we refer to the classical paper of Carrillo [34].

Systems similar to the Model Problem B are encountered as upscaled reactive porous media flows. For the analysis of such
systems we refer to [15, 35]. Uniqueness results are obtained in [36]. A model similar to Model Problem B was studied in [37--40].

4. Finite volume discretization

The discretization scheme is defined on an admissible mesh, as introduced by Eymard et al. in [41]. Here we restrict our approach
to the two-dimensional case.

Definition 1 (Admissible mesh)
Let � be an open-bounded polygonal subset of R2. An admissible finite volume mesh of � is a triplet (T,E,P), where T is a
family of open polygonal convex subsets of � called control volumes, E is a family of subsets of � contained in straights of R2

with strictly positive one-dimensional measure, called the edges of the control volumes, and P is a family of points of � satisfying
the following properties:

1. The closure of the union of all the control volumes is �.
2. For any M∈T, there exists a subset EM of E such that �M=M\M=⋃�∈EM

�. Furthermore, E=⋃M∈TEM.

3. For any (M, L)∈T2 with M �=L, either the (d−1)-dimensional Lebesgue measure of M∩L is 0 or M∩L=� for some �∈E, which
then is denoted by M|L or l.

4. The family P= (xM)M∈T is such that xM ∈M (for all M∈T) and, if �=M|L= l, we assumed that xM �=xL, and that the straight
line DM,L going through xM and xL is orthogonal to M|L= l.

5. For any �∈E such that �⊂��, let M be the control volume such that �∈EM. If xM /∈�, let DM,� be the straight line going
through xM and orthogonal to �, then the condition DM,�∩� �=∅ is assumed; let y� =DM,�∩�.

In this work, we consider a Donald Dual mesh T (see [42]) generated by a finite element triangulation � :={Ti, i=1,. . . , Ne} (see
[43]). The barycenter of T ∈� is such that xT =⋂M∩T �=� �M∈T . The family P is formed by the points xM :=⋂T∩M�=� �T ∈M for each

control volume of T. We denote by l :=�Mi ∩�Mj ∩T the line segment between the points xT and the midpoint of (xMi , xMj ) and let

E :={l ∈�M\�|M∈T} (see Figure 2). The triplet (T,E,P) is an admissible mesh in the sense of the previous definition.
In the sequel, the following notations are used. The mesh size is defined by h :=size(T)=supM∈T diam(M). For any M∈T, |M|

is the area of M. The set of neighbors of M is denoted by N(M), that is N(M)={L∈T|∃�∈EM,�=M∩L}.

Copyright © 2009 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2010, 33 1059–1077
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The time discretization may be performed with a variable time step; in order to simplify the notations, we consider a constant
time step �t ∈ (0, T). Let N�t ∈N∗ such that N�t :=max{n∈N|nk<T}, and we denote tn =n�t, for n∈{0,. . . , N�t+1}.

The discrete unknowns are denoted by {wn
M|M∈T, n∈{0,. . . , N�t +1}}; the value wn

M is an expected approximation of w(xM, n�t),
where w ≡u1, u2 or u3.

Definition 2
Let X(T,�t) be the set of functions w from �×(0, (N�t +1)�t) to R such that there exists a family of real values {wn

M|M∈T, n∈
{0,. . . , N�t +1}}, with w(x, t)=wn

M for a.e. x ∈M, M∈T and for a.e. t ∈ [n�t, (n+1)�t), with n∈{0,. . . , N�t}.

4.1. Discretization of Equation (11)

Integrating (11) over the set M×[tn, tn+1] with M∈T, we obtain∫
M

(u1(·, tn+1)−u1(·, tn))+Tc −Td =Tr

where Tc :=∑l∈�M
∫ tn+1

tn

∫
l �1(u1)v ·nM, l , Td :=∑l∈�M

∫ tn+1
tn

∫
l D(v)∇�1(u1) ·nM, l and Tr :=−�

∫
M

∫ tn+1
tn

�w�1(u1) are the convective,

diffusive and reactive terms, respectively, and nM,l is the outward normal to l ∈�M. The advection term Tc is approximated by an
upwind Godunov scheme (see [42]).

Tc ≈∑
l

|�t||l|�1(un+1
1,l )vn

l ·nM, l =−∑
l

|�t||l|(�1(un+1
1, Ml

)−�1(un+1
1, M ))(−vn

l ·nM, l)
+ (17)

where

un+1
1, l :=

⎧⎨
⎩

un+1
1,M if vn

l ·nM,l�0

un+1
1,Ml

if vn
l ·nM,l<0

On the other hand, the diffusive term Td is approximated by an P1-FEM scheme. Specifically, the standard P1 finite element basis
satisfying �Mi

(Mj)=
ij gives

Td ≈∑
l

DM,l(�1(un+1
1,Ml

)−�1(un+1
1,M )) (18)

where DM,l :=−|T|∇�Ml,T ·D(vn
T )∇�M,T , and T is such that M∩T �=∅ and l ∈�M∩T . Finally, the reaction term Tr is approximated by∫

M

∫ tn+1

tn

�w�1(u1)≈|�t||M|�n+1
w,M �1(un+1

1,M ) (19)

where �n+1
w,M is the mean value of �w over M×[tn, tn+1]. Using (17)–(19), the finite volume approximation to (11) is defined as

|M|(un+1
1,j −un

1,j)+ T̂1c − T̂1d = T̂1r (20)

where

T̂1c := −|�t|∑
l

|l|(�1(un+1
1l )−�1(un+1

1,j ))(−vn
l ·njl)

+

T̂1d := |�t|∑
l

(�1(un+1
1l )−�1(un+1

1,j ))Djl

T̂1r := −�|�t||M|�n+1
w,M �1(un+1

1,M )

Here, we have noted j≡M≡Mj , l ≡Ml .

4.2. Discretization of the system (12)–(13)

As for (20), the finite volume scheme for (12)–(13) reads

|M|(un+1
2,j −un

2,j)+ T̂2c − T̂2d = T̂2r (21)

un+1
3,j −un

3,j

|�t| +ke�
n
wj�1(un

1,j)un
3,j = �s

(�2 ◦�2)(un+1
2,j )−(�2 ◦�2)(un

2,j)

|�t| (22)

where

T̂2c := −|�t|∑
l

|l|(�2(un+1
2l )−�2(un+1

2,j ))(−vn
l ·njl)

+

T̂2d := |�t|∑
l

(�2(un+1
2l )−�2(un+1

2,j ))Djl

T̂2r := ke�s|�t||M|�n
wj�1(un

1,j)un
3,j

1
0
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5. Convergence analysis for model problem A

In this section Equation (11) and its corresponding numerical scheme (20) are considered. The convergence analysis follows the
main ideas of [18, 41, 44].

Let us state the following assumptions:

(A1) � is a bounded open polygonal subset of R2.
(A2) �w(x, t)∈L∞(�×(0, T)) is such that 0<�−

w��w(x, t)��+
w<1.

(A3) D is a bounded, uniformly positive-definite symmetric tensor on �×(0, T).
(A4) ui(x, t =0),∈L∞(�×(0, T)), i=1, 2, 3.

(A5) �i ∈C1[0,∞[, such that �′
i (0)=0 y �

′
i (s)>0, ∀s>0, i=1, 2.

�i ,�
′
i ∈L∞(�×(0, T)), i=1, 2.

(A6) vw ∈ (L∞(�×(0, T))2, ∇ ·vw =0, vn
w →vw in L2(�×(0, T)).

(A7) �i ,�i , i=1, 2, are Lipschitz continuous with constant K�i , L�i , i=1, 2, respectively.

Note that the assumption (A5) includes the case of the degenerate parabolic equation, and in particular the porous medium
equation.

5.1. L∞ stability, existence and uniqueness

The existence of solutions for the scheme (20) is provided by the following lemma (see [45]):

Lemma 1 (Acute angle condition)
Let A be a finite-dimensional Hilbert space with scalar product (·, ·) and norm ‖·‖, and let P be a continuous mapping from A

into itself such that for ‖�‖= r>0 : (P(�),�)>0. Then there exists �∈A with ‖�‖�r such that P(�)=0.

The L∞ stability, existence and uniqueness for the finite volume scheme (20) is given in

Proposition 1
Under the assumptions (A1)–(A7), and assuming that

�L�1 ||�w||∞|�t|< 1
2

the scheme (20) is L∞ stable. Additionally, the scheme (20) has a unique solution.

Proof
First, we note that there exists �=�(un+1

1, j ) such that

�1(un+1
1l )−�1(un+1

1, j )=�′
1(�)(un+1

1l −un+1
1,j )

Therefore, the scheme (20) can be written as

un+1
1,j −un

1,j −
|�t|
|M|

∑
l

|l|(−vn
l ·njl)

+�′
1(�)(un+1

1l −un+1
1,j )− |�t|

|M|
∑

l
Djl�

′
1(�)(un+1

1l −un+1
1,j )+�|�t|�n+1

wj �1(un+1
1,j )=0

that is,

un+1
1,j

{
1+ |�t|

|M|
∑

l
�′

1(�)(|l|(−vn
l ·njl)

++Djl)

}
− |�t|

|M|
∑

l
�′

1(�)(|l|(−vn
l ·njl)

++Djl)un+1
1l +�|�t|�n+1

wj �1(un+1
1,j )=un

1,j

This last scheme can be written as a system of nonlinear equations

A(Un+1
1 )Un+1

1 +b(Un+1
1 )=Un

1 , n�0 (23)

where for all i �= j∈{0,. . . , Ns}

Aii := 1+ |�t|
|M|

∑
l∈�Mi

�′
1(�)(|l|(−vn

l ·nil)
++Dil)

Aij := −|�t|
|M|

∑
l∈�Mi∩�Mj

�′
1(�)(|l|(−vn

l ·nil)
++Dil)

bi := �|�t|�n+1
wj �1(un+1

1,j )

and Un+1
1 := [un+1

11 , un+1
12 ,. . . , un+1

1,j ,. . . , un+1
1Ns

]T. From system (23), it is possible to define an auxiliary problem: given the applications

b(·) and A(·), and the vector c :=Un, find a vector x such that,

F(x) :=A(x)x+b(x)−c=0 (24)

Copyright © 2009 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2010, 33 1059–1077
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L∞-stability: We note that the matrix A is a monotone matrix, that is, we have A−1
ij �0. Furthermore (Aij −

∑
i �=j |Aij|)�1, then

‖A−1‖∞�1, where ‖·‖∞ is the l∞ matrix norm; hence, there exists a generic constant C>0, independent of h, |�t| such that, from
system (24),

‖x‖∞ =‖A−1(x)c−A−1(x)b(x)‖�‖A−1(x)‖∞(‖c‖∞+‖b(x)‖∞)�‖Un
1‖∞+�|�t|‖�w‖∞‖�1‖∞�C

because an induction argument on n�0.
Existence: At this point it is enough to verify the assumptions of Lemma 1. Further, (24) becomes

(F(x), x)= (A(x)x, x)+(b(x), x)−(c, x)

where (·, ·) denotes the standard Euclidean inner product. Thus, we have that

(A(x)x, x)= (x, x)+(M(x)x, x)�‖x‖2

because A(x)= I+M(x), where I is the identity matrix and M(x) has a positive main diagonal elements exceeding the (column, as
well as row) sum of the absolute values of the off-diagonal elements, which are negative or zero. Therefore, M is both, row and
column wise diagonal dominant, implying that the inner product (M(x)x, x) is never negative. On the other hand, we have that

|(b(x), x)|��L�1‖�w‖∞|�t‖|x‖2

that is, (b(x), x)�−�L�1‖�w‖∞|�t|‖x‖2. Finally, it is enough to mention that (c, x)�− 1
2 (‖c‖2 +‖x‖2). Now, collecting the above

inequalities, choosing r>0, as r2 :=‖x‖2>2‖c‖2>0, and assuming that �L�1‖�w‖∞|�t|< 1
2 , we have that (F(x), x)>0 for ‖x‖= r>0.

Therefore, by Lemma 1, there exists x with ‖x‖�r such that F(x)=0.
Uniqueness: Let Un+1

1 = (un+1
1,j )j=0,Ns and Vn+1

1 = (vn+1
1,j )j=0,Ns be two solutions of the implicit scheme (1), that is for j=0,. . . , Ns,

un+1
1,j −un

1,j −
|�t|
|M|

∑
l

|l|(−vn
l ·njl)

+(�1(un+1
1l )−�1(un+1

1,j ))− |�t|
|M|

∑
l

Djl(�1(un+1
1l )−�1(un+1

1,j ))+�|�t|�n+1
wj �1(un+1

1,j ) = 0

vn+1
1,j −vn

1,j −
|�t|
|M|

∑
l

|l|(−vn
l ·njl)

+(�1(vn+1
1l )−�1(vn+1

1,j ))− |�t|
|M|

∑
l

Djl(�1(vn+1
1l )−�1(vn+1

1,j ))+�|�t|�n+1
wj �1(vn+1

1,j ) = 0

By subtracting, and applying similar arguments to existence case, we obtain for wn+1
1q :=un+1

1q −vn+1
1q , q= j, l,

wn+1
1,j

{
1+ |�t|

|M|
∑

l
�′

1,j(�j)(|l|(−vn
l ·njl)

++Djl +�|�t|�n+1
wj )

}
− |�t|

|M|
∑

l
�′

1l(�l)(|l|(−vn
l ·njl)

++Djl)wn+1
1l =0

where �′
1q(�q) :=�′

1q(un+1
q , vn+1

q ), q= j, l. This last scheme can be written as a system of equations,

Ã(Un+1
1 , Vn+1

1 )Wn+1
1 =0

where following a similar argument to existence case, we obtain the nonsingularity of the matrix Ã. Therefore, Wn+1
1 =

Un+1
1 −Vn+1

1 =0. �

Proposition 2
Consider the scheme (20); assuming (A1)–(A7), there exist the constants Ci>0, i=1, 2, independent of h and �t, such that

�t
∑
n,l

|l|(�1(un+1
1l )−�1(un+1

1,j ))2|vn
l ·njl| � C1

�t
∑
n,l

(�1(un+1
1l )−�1(un+1

1,j ))2Djl � C2

Proof
Multiplying (20) by un+1

1,j and using
∑

j , we get

∑
j

|M|un+1
1,j (un+1

1,j −un
1,j)=−∑

j
un+1

1,j T̂1c +∑
j

un+1
1,j T̂1d +∑

j
un+1

1,j T̂1r

Using 0�(a−b)2 / 2=a(a−b)−(a2 −b2) / 2 in the left-hand side of this last equation, we obtain

1

2

∑
j

|M|[(un+1
1,j )2 −(un

1,j)
2]�−∑

j
un+1

1,j T̂1c +∑
j

un+1
1,j T̂1d +∑

j
un+1

1,j T̂1r

that is,

∑
j

un+1
1,j T̂1c −∑

j
un+1

1,j T̂1d�− 1

2

∑
j

|M|[(un+1
1,j )2 −(un

1,j)
2]+∑

j
un+1

1,j T̂1r

1
0

6
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In this last inequality, we estimate the convective term

∑
j

un+1
1,j T̂1c =∑

j
un+1

1,j

{
−|�t|∑

l
|l|(�1(un+1

1l )−�1(un+1
1,j ))(−vn

l ·njl)
+
}

� |�t|
2 sup(�′

1)

∑
j,l

|l|(−vn
l ·njl)

+(�1(un+1
1,j )−�1(un+1

1l ))2

the diffusive term

−∑
j

un+1
1,j T̂1d =∑

j
un+1

1,j

{
|�t|∑

l
(�1(un+1

1l )−�1(un+1
1,j ))Djl

}
� |�t|

2 sup(�′
1)

∑
l∈£h

Dj,l(�1(un+1
1,j )−�1(un+1

1l ))2

and the reactive term ∑
j

un+1
1,j T̂1r =

∑
j

un+1
1,j {−�|�t||M|�n+1

w,M �1(un+1
1,M )}��|�t|‖�w‖∞‖�′

1‖∞‖Un+1
1 ‖∞|�|

Then by summing over n=0,. . . , N�t , we deduce that there exists a constant C>0, independent of h and �t, such that

|�t|
2 sup(�′

1)

∑
n,j,l

|l|(−vn
l ·njl)

+(�1(un+1
1,j )−�1(un+1

1l ))2 + |�t|
2 sup(�′

1)

∑
n,l∈£h

Dj,l(�1(un+1
1,j )−�1(un+1

1l ))2

�1

2

∑
j

|M|((u0
1,j)

2 −(uN�t+1
1,j )2)+�T‖�w‖∞‖�′

1‖∞‖Un+1
1 ‖∞|�|�C �

5.2. Convergence results

Lemma 2
Consider the scheme (20). There exists a constant C>0, independent of h and �t, such that∑

n,j
�t|M|(�1(un+1

1,j )−�1(un
1,j))

2 +∑
n,l

�t|l|(�1(un
1l)−�1(un

1,j))
2�C(h+|�t|)

Proof
Multiplying (20) by �1(un+1

1,j )−�1(un
1,j), using

∑
j and reordering, we get

∑
j

|M|(�1(un+1
1,j )−�1(un

1,j))(un+1
1,j −un

1,j)=Cn+1 −Cn +Dn+1 −Dn −Rn+1 (25)

where for s∈{n, n+1},

Cs := |�t|∑
Mj

∑
l∈�Mj

|l|(�1(un+1
1l )−�1(un+1

1,j ))�1(us
1,j)(−vn

l ·njl)
+

Ds := |�t|∑
Mj

∑
l∈�Mj

(�1(un+1
1l )−�1(un+1

1,j ))�1(us
1,j)Djl

Rn+1 := �|�t|∑
Mj

|Mj|�n+1
wj �1(un+1

1,j )

Using similar arguments as Afif–Amaziane [18], we estimate first the terms Cs and Ds: we note that there exist constants C1>0 and
C2>0, independent of h and �t, such that

∑
n |Cs|�C1 and

∑
n |Ds|�C2. For the reactive term Rn+1, we note that there exists a

constant C3>0, independent of h and �t, such that,∑
n

|Rn+1|��‖�w‖∞‖�1‖∞
∑
n

|�t|∑
j

|Mj|��‖�w‖∞‖�1‖∞T|�|�C3

On the other hand, for the left-hand side in (25), we note that for each real numbers a and b:

(�1(b)−�1(a))2 = �1(b)−�1(a)

b−a
(�1(b)−�1(a))(b−a)=�′

1(·)(�1(b)−�1(a))(b−a)�sup |�′
1|(�1(b)−�1(a))(b−a)

Therefore, there exists a constant C4>0, such that∑
n,j

|Mj|(�1(un+1
1,j )−�1(un

1,j))
2�C4

that is, ∑
n,j

|�t||Mj|(�1(un+1
1,j )−�1(un

1,j))
2�C4|�t|

Copyright © 2009 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2010, 33 1059–1077
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Finally, by Proposition 2, there exists a constant C5>0, such that

|�t|∑
n,l

(�1(un+1
1l )−�1(un+1

1,j ))2D−�|�t|∑
n,l

(�1(un+1
1l )−�1(un+1

1,j ))2Djl�C5

that is,

|�t|D−
∑
n,l

(C6|l|)(�1(un+1
1l )−�1(un+1

1,j ))2�|�t|∑
n,l

h(�1(un+1
1l )−�1(un+1

1,j ))2D−�h C5

Therefore, there exists a constant C7>0 such that

|�t|∑
n,j

|Mj|(�1(un+1
1,j )−�1(un

1,j))
2 +|�t|∑

n,l
|l|(�1(un+1

1l )−�1(un+1
1,j ))2�C4|�t|+ hC5

(D−)C6
�(|�t|+h) C7 �

Lemma 3
Under Assumptions (A1)–(A7), let T be an admissible mesh in the sense of Definition 1 and �t ∈ (0, T). Let u1,T,�t ∈X(T,�t) be given
by Definition 2. Let B1 :=‖u1,T,�t‖L∞(�×(0,T)) and L�1 be the Lipschitz constant of �1 on [−B1, B1]. One defines Ũ1 by Ũ1 =u1,T,�t

a.e. on �×(0, T), and Ũ1 =0 a.e. on R2+1 \�×(0, T). Then, there exists a constant C>0, independent of �, h and �t, such that

‖�1(Ũ1(·, ·+�))−�1(Ũ1(·, ·))‖2
L2(R2+1)

�C|�| ∀�∈R

Proof
This proof follows the main ideas of Lemma 18.7 in [41]. Let �∈ (0, T). As L�1 is the Lipschitz constant of �1 and �1 is nondecreasing,
the following inequality holds:

∫
�×(0,T−�)

(�1(u1,T,�t(x, t+�))−�1(u1,T,�t(x, t)))2 dx dt�L�1

∫ T−�

0
A(t) dt

where, for almost every t ∈ (0, T −�),

A(t)=
∫

�
(�1(u1,T,�t(x, t+�))−�1(u1,T,�t(x, t)))(u1,T,�t(x, t+�)−u1,T,�t(x, t)) dx

Note that the function A(t) may be written as (for more details see proof of Lemma 18.7 in [41])

A(t)= ∑
M∈T

(�1(un1(t)
1M )−�1(un0(t)

1M ))
N�t∑

n=1
�n(t, t+�)m(M)(un

1M −un−1
1M ) (26)

where n0(t), n1(t)∈{0,. . . , N�t} such that n0(t)�t�t<(n0(t)+1)�t and n1(t)�t�t<(n1(t)+1)�t, and �n(t, t+�)=1 if n�t ∈ (t, t+�] and
�n(t, t+�)=0 if n�t /∈ (t, t+�]. In (26), the order of summation between n and M is changed and the scheme (20) is used. Hence,

A(t) = �t
N�t∑

n=1
�n(t, t+�)

[ ∑
M∈T

(�1(un1(t)
1M )−�1(un0(t)

1M ))

( ∑
l∈N(M)

|l|(�1(un
1L)−�1(un

1M))(−vn−1
l ·nl)

+
)

+ ∑
l∈N(M)

(�1(un
1L)−�1(un

1M))Djl −�|M|�n
wj�1(un

1,j)

]
=A1(t)+A2(t)+A3(t)

where

A1(t) := �t
N�t∑

n=1
�n(t, t+�)

∑
M,l

|l|(�1(un1(t)
1M )−�1(un0(t)

1M ))(�1(un
1L)−�1(un

1M))(−vn−1
l ·nl)

+

A2(t) := �t
N�t∑

n=1
�n(t, t+�)

∑
M,l

(�1(un1(t)
1M )−�1(un0(t)

1M ))(�1(un
1L)−�1(un

1M))Djl

A3(t) := �t
N�t∑

n=1
�n(t, t+�)

∑
M

(�1(un1(t)
1M )−�1(un0(t)

1M ))(−�|M|�n
wj�1(un

1,j))

For the third term, we have that

∫ T−�

0
A3(t) dt � �

N�t∑
n=1

�t

( ∑
M∈T

2B1L�1 |M|‖�w‖∞‖�1‖∞

)∫ T−�

0
�n(t, t+�) dt

� ��T|�|2B1L�1‖�w‖∞‖�1‖∞

1
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On the other hand, we note that gathering by edges and using the inequality 2ab�a2 +b2; a, b∈R, this yields

∫ T−�

0
A2(t) dt �

N�t∑
n=1

�t
∑

l
(�1(un0(t)

1L )−�1(un0(t)
1M ))(�1(un

1L)−�1(un
1M))Djl

∫ T−�

0
�n(t, t+�) dt

+
N�t∑

n=1
�t
∑

l
(�1(un1(t)

1L )−�1(un1(t)
1M ))(�1(un

1L)−�1(un
1M))Djl

∫ T−�

0
�n(t, t+�) dt

� 1

2

∑
n,l

�t(�1(un0(t)
1L )−�1(un0(t)

1M ))2Djl

∫ T−�

0
�n(t, t+�) dt+ 1

2

∑
n,l

�t(�1(un1(t)
1L )−�1(un1(t)

1M ))2Djl

∫ T−�

0
�n(t, t+�) dt

+∑
n,l

�t(�1(un
1L)−�1(un

1M))2Djl

∫ T−�

0
�n(t, t+�) dt

� 1

2
C�+ 1

2
C�+C�

where the constant C>0, which is independent of �, k and h, is from Proposition 2. Finally, applying similar arguments and gathering
by edges using the inequality 2ab�a2 +b2; a, b∈R, this yields

∫ T−�

0
A1(t) dt � 1

2

[
N�t∑

n=1
�t

∑
l∈N(M)

|l|(�1(un1(t)
1M )−�1(un0(t)

1M ))2(−vn−1
l ·njl)

+ +
N�t∑

n=1
�t

∑
l∈N(M)

|l|(�1(un1(t)
1L )−�1(un0(t)

1L ))2(vn−1
l ·njl)

+

+
N�t∑

n=1
�t

∑
l∈N(M)

|l|(�1(un
1L)−�1(un

1M))2|vn−1
l ·njl|

]∫ T−�

0
�n(t, t+�) dt

� 1

2
(C1 +C2 +C3)�

where Ci>0, i=1, 2, 3, are constants, independent of �, �t and h. �

We recall the Kolmogorov compactness theorem in L2(�). The proof of this theorem can be found in [46].

Theorem 1 (Fréchet–Kolmogorov)
Let � be an open-bounded set of RN , N�1, 1�q�∞ and A⊂Lq(�). Then, A is relatively compact in Lq(�) if and only if there exists
{p(u), u∈A}⊂Lq(RN) such that

1. p(u)=u a.e. on �, for all u∈A.
2. {p(u), u∈A} is bounded in Lq(RN).
3. ‖p(u)(·+�)−p(u)‖Lq(RN) −→0, as �−→0, uniformly with respect to u∈A.

Now we can prove the main result of this section.

Theorem 2
Under the assumptions (A1)–(A7), the approximate solution u1h given by the scheme (20) converges to u1 in L2(QT ) as h and �t
go to zero.

Proof
Let us set �̃1h :=�1(u1h) on QT and �̃1h :=0 on R3\QT . From Propositions 1 and 2, and Lemma 2, we have that (�̃1h)⊆L∞(R3)∩L2(R3).
Then, the first and second items of Theorem 1 are clearly satisfied for N=d+1, d =2, q=2 and �=�×(0, T)). In order to verify the
third hypothesis of Theorem 1, we note that the following inequality is verified:

‖�̃1h(·+�, ·+�)− �̃1h(·, ·)‖L2(R2+1)�‖�̃1h(·+�, ·)− �̃1h(·, ·)‖L2(R2+1) +‖�̃1h(·, ·+�)− �̃1h(·, ·)‖L2(R2+1)

for any �∈R2 and �∈R. In order to estimate this inequality, we note first that there exists a bound C(|�|)>0, such that ‖�̃1h(·+
�, ·)− �̃1h(·, ·)‖L2(R2+1)�C(|�|), and C(|�|)→0 if |�|→0 (see [41, Lemma 18.3, p. 851]), and then the first term on the right-hand side
is uniformly bounded. On the other hand, applying Lemma 3, there exists a constant C>0, independent of � and �, such that
‖�̃1h(·, ·+�)− �̃1h(·, ·)‖L2(R2+1)�C�. This yields the compactness of the sequence (�̃1h) in L2(QT ).

Thus, there exists a subsequence, still denoted by (�̃1h), and there exists �∗
1 ∈L2(QT ) such that (�̃1h) converges to �∗

1 in L2(QT ).
Indeed, as (�̃1h)⊆L∞(QT ), this convergence holds in Lq(QT ) for all 1�q<∞. Furthermore, as �1 is nondecreasing, we can pass to the
limits also in the nonlinearity obtaining �∗

1 =�1(u∗
1) and u∗

1 =�−1
1 (�∗

1) (see [41, Theorem 18.2]). Therefore, (�1h) converges to �1(u∗
1)

in L1(QT ), and even in Lp(QT ) for all p∈ [0,∞).

Copyright © 2009 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2010, 33 1059–1077
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It remains to be shown that u∗
1 is a weak solution (see definition in Section 3.1.1). For this, let v ∈V be a test function and denote

vn
j ≡v(xMj , tn). Multiplying by vn

j in the scheme (20), we obtain by summation

∑
n,j

|M||�t|vn
j

un+1
1,j −un

1,j

|�t| +∑
n,j

vn
j T̂1c =∑

n,j
vn

j T̂1d +∑
n,j

vn
j T̂1r

that is, H1 +H2 =H3 +H4, where

H1 := −∑
j

|M|vo
j uo

1,j +
∑
n,j

|�t||M|un+1
1,j

vn
j −vn+1

j

|�t|

H2 :=∑
n,j

|�t|vn
j
∑

l∈�M
�1(u1)|n+1

l vn
l ·nj,l|l|

H3 :=∑
n,j

|�t|vn
j
∑

l∈�M
(�1(un+1

1l )−�1(un+1
1,j ))Dj,l

H4 := −∑
n,j

vn
j (�|�t||M|�n+1

w,j �1(un+1
1,j ))

Taking into account the assumptions on the data and using the Lebesgue theorem, it follows that as h and �t tend to 0

H1 −→−
∫

�
uo

1v(x, 0)−
∫

QT

u∗
1�tv

On the other hand, we note that H2 =H2a +H2b, where

H2a :=∑
n,j

�t
∑

l∈�M
(�1(u1)−�1(un+1

1,j ))vn
l ·njl|l|(vn

j −vn
l )

and

H2b :=−∑
n,j

|�t|�1(un+1
1,j )

∑
l∈�M

∫
l

vnvn
l ·njl d�

About the estimate of H2a, we note that there exists a constant C>0, independent of h and �t, such that |H2a|�Ch1/2, that is,
limh→0 |H2a|=0. On the other hand, we note that

H2b =−∑
n,j

|�t|
∫

Mj

�1(un+1
j )div(vn

l vn) dx =−∑
n,j

|�t|
∫

Mj

�1(un+1
j )vn

l ·∇vn dx

Therefore, H2 −→−∫QT
�1(u∗

1)v ·∇v. About the convergence of H3, we note that

H3 = −∑
n,j

�t�1(un+1
1,j )

∑
l∈�M\�

(vn
l −vn

j )Dj,l

= −∑
n,j

�t�1(un+1
1,j )

∑
T∩M�=∅

∑
l∈�M∩T\�

(DT ∇vn
T ·nj,l|l|)

= −∑
n,j

�t�1(un+1
1,j )

∑
l∈�M\�

(Dl∇vn
l ·nj,l|l|)

=∑
n,j

�t�1(un+1
1,j )

∑
l∈�M∩�

(Dl∇vn
l ·nj,l|l|)−

∑
n,j

�t�1(un+1
1,j )

∑
l∈�M

(Dl∇vn
l ·nj,l|l|)

Therefore,

H3 −→
∫

J

∫
�

�1(u∗
1)D(v)∇v ·n ds dt−

∫ ∫
QT

�1(u∗
1) div(D(v)∇v) dt dx

that is, H3 −→−∫QT
D(v)∇�1(u∗

1) ·∇v. About the convergence of H4, it is enough to mention that H4 −→−�
∫

QT
�w�1(u∗

1)v. Finally,
passing to the limit in (24) yields[

−
∫

�
uo

1v(x, 0)−
∫

QT

u∗
1�tv

]
−
∫

QT

�1(u∗
1)v ·∇v =−

∫
QT

D(v)∇�1(u∗
1) ·∇v−�

∫
QT

�w�1(u∗
1)v

Then, u∗
1 is a weak solution of problem (11) that only admits a unique solution u1. Thus the entire sequence (un

1h) converges to u1,
which ends the proof. �

1
0

7
0
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6. Convergence analysis for model problem B

In this section we analyze the convergence of the numerical scheme (21)–(22) to a solution of (12)–(13).

6.1. L∞ stability, existence and uniqueness

Proposition 3
Under the assumptions (A1)–(A7) the scheme (22) is L∞ unconditionally stable.

Proof
From (22) and by an induction argument, it is enough to mention that

|un+1
3,j |�|un

3,j|(1−ke|�t|�n
wj�1(un

1,j))+�s|(�2 ◦�2)(un+1
2,j )−(�2 ◦�2)(un

2,j)|�(ke��s‖�w‖∞‖�1‖∞‖�2 ◦�2‖∞)|un
3,j|

where |uo
3,j|�C. �

Proposition 4
Under the assumptions (A1)–(A7), the scheme (21) is L∞ unconditionally stable.

Proof
In this case, the scheme (21) can be written as a system of equations, namely

A(Un+1
2 )Un+1

2 =Un
2 +b̃(Un

1 , vn
3)

with b̃i :=ke�s|�t|�n
wi�1(un

1i)un
3i , the matrix A is the same as in Proposition 1, and the vectors Un

2 and b̃(Un
1 , vn

3) are given. In this case
the system of nonlinear equations is defined as F(x) :=A(x)x−c=0. The proof follows the same line as that of Proposition 1. �

Proposition 5
Under the assumptions (A1)–(A7), there exist constants Ci>0, i=1, 2, independent of h and �t, such that

�t
∑
n,l

|l|(�2(un+1
2l )−�2(un+1

2,j ))2|vn
l ·njl| � C1

�t
∑
n,l

(�2(un+1
2l )−�2(un+1

2,j ))2Djl � C2

Proof
In a similar way to Proposition 2, we get

1

2

∑
j

|M|[(un+1
1,j )2 −(un

1,j)
2]�−∑

j
un+1

1,j T̂1c +∑
j

un+1
1,j T̂1d +∑

j
un+1

1,j T̂1r

or equivalently,

∑
j

un+1
1,j T̂1c −∑

j
un+1

1,j T̂1d�− 1

2

∑
j

|M|[(un+1
1,j )2 −(un

1,j)
2]+∑

j
un+1

1,j T̂1r

About the reactive term, there exists a constant C>0, independent of h and �t such that,∑
n,j

un+1
1,j T̂1r =

∑
n,j

un+1
1,j (ke�s|�t||Mj|�n

wj�1(un
1,j)un

3,j)�ke�s‖Un+1
1 ‖∞‖�w‖∞‖�1‖∞‖vn

3‖∞
∑
n,j

|�t||Mj|�C

In this point the proof follows the same line of Proposition 2. �

6.2. Convergence results

The following estimate is valid for scheme (21):

Lemma 4
There exists a constant C>0, independent of h and �t, such that∑

n,j
�t|M|(�2(un+1

2,j )−�2(un
2,j))

2 +∑
n,l

�t|l|(�2(un
2l)−�2(un

2,j))
2�C(h+|�t|)

Proof
The proof follows the ideas for Lemma 2. It is enough mentioning that, for the reaction term, there exists a constant C1>0,
independent of h and �t such that,∑

n,j
|Mj|(�2(un+1

2,j )−�2(un
2,j))T̂1r =∑

n,j
|Mj|(�2(un+1

2,j )−�2(un
2,j))(ke�s|�t|�n

wj�1(un
1,j)un

3,j)

� ke�s‖Un+1
1 ‖∞‖�w‖∞‖�1‖∞‖�2‖∞‖vn

3‖∞
∑
n,j

|�t||Mj|�C1 �

Copyright © 2009 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2010, 33 1059–1077
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Proposition 6
Under the assumptions (A1)–(A7), there exists a constant C>0, independent of h and �t, such that∑

n,j
|�t||M|(un+1

3,j −un
3,j)

2�C(|�t|+h)

Proof
From (22) we get ∑

n,j
|�t||M|(un+1

3,j −un
3,j)

2�T1 +T2

Further,

T1 := �s
∑
n,j

|�t||M||(�2 ◦�2)(un+1
2,j )−(�2 ◦�2)(un

2,j)||un+1
3,j −un

3,j|

� �s
∑
n,j

|�t||M|
[
�|(�2 ◦�2)(un+1

2,j )−(�2 ◦�2)(un
2,j)|2 + 1

4�
|un+1

3,j −un
3,j|2

]

� �s
∑
n,j

|�t||M|
[
�K�2 |�2(un+1

2,j )−�2(un
2,j)|2 + 1

4�
|un+1

3,j −un
3,j|2

]

where we can choose � :=�s / 2. Finally we have

T2 :=ke
∑
n,j

|�t|2|M|�n
wj�1(un

1,j)|un
3,j||un+1

3,j −un
3,j|�ke|�t|C2

The conclusion follows straightforwardly. �

Proposition 7
Under the assumptions (A1)–(A7), there exists a constant C>0, independent of h and �t, such that

1

2

∑
n,l

|�t||l|(un
3,j −un

3l)
2�C(|�t|+h)

Proof
From Equation (13)

u3,j(t)=−tke�wj(t)�1(u1,j(t))u3,j(t)+�s(�2 ◦�2)(u2,j)(t)+u3,j(0)−�s(�2 ◦�2)(u2,j)(0)

Hence, ∑
n,l

|�t||l||u3,j(t)−u3l(t)|2 =T1 +T2

where

T1 :=�s
∑
n,l

|�t||l|((�2 ◦�2)(u2,j)−(�2 ◦�2)(u2l))(u3,j −u3l)

and

T2 :=−ke
∑
n,l

t|�t||l|(�wj�1(u1,j)u3,j −�wl�1(u1l)u3l)(u3,j −u3l)

In order to estimate T1, we have

T1 � �s
∑
n,l

|�t||l|
[
�1|(�2 ◦�2)(u2,j)−(�2 ◦�2)(u2l)|2 + 1

4�1
|u3,j −u3l|2

]

� �s
∑
n,l

|�t||l|
[
�1K�2 |�2(u2,j)−�2(u2l)|2 + 1

4�1
|u3,j −u3l|2

]

Now, in order to estimate T2, applying the identity ab−cd =b(a−c)+c(b−d), for each real numbers a, b, c, d, we have

(�wj�1(u1,j)u3,j −�wl�1(u1l)u3l)(u3,j −u3l)=u3,j�1(u1,j)(�wj −�wl)+u3,j�wl(�1(u1,j)−�1(u1l))+�wl�1(u1l)(u3,j −u3l)

Therefore, if we suppose that for each j, l: �wj =�wl , then for T2, we get

T2 = −ke
∑
n,l

t|�t||l|{u3,j�w(�1(u1,j)−�1(u1l))+�w�1(u1l)(u3,j −u3l)}(u3,j −u3l)

= −ke
∑
n,l

t|�t||l|u3,j�w(�1(u1,j)−�1(u1l))(u3,j −u3l)−ke
∑
n,l

t|�t||l|�w�1(u1l)(u3,j −u3l)
2

1
0

7
2
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In this last equality, the second term in the right-hand side is exchanged to the left-hand side, obtaining∑
n,l

|l||�t|(u3,j −u3l)
2�
∑
n,l

|l||�t|(1+ket�w�1(u1l))(u3,j −u3l)
2

��s
∑
n,l

|�t||l|
[
�1K�2 |�2(u2,j)−�2(u2l)|2 + 1

4�1
|u3,j −u3l|2

]
+∑

n,l
|�t||l|

[
�2|u3,j||�w||�1(u1,j)−�1(u1l)|2 + 1

4�2
|u3,j −u3l|2

]

Therefore it is enough to choose �1 =�2 =1. �

Lemma 5
Under Assumptions (A1)–(A7), let T be an admissible mesh in the sense of Definition 1 and �t ∈ (0, T). Let u3,T,�t ∈X(T,�t) be
given by Definition 2. One defines ũ3 by ũ3 =u3,T,�t a.e. on �×(0, T), and ũ3 =0 a.e. on R2+1 \�×(0, T). Then, there exists a
constant C>0, independent of �, h and �t, such that

‖ũ3(·, ·+�)− ũ3(·, ·)‖2
L2(R2+1)

�C|�| ∀�∈R

Proof
We start by noticing that ∫

�×(0,T−�)
(ũ3(x, t+�)− ũ3(x, t))2 dt =

∫ T−�

0
A(t) dt

where

A(t) :=
∫

�
(ũ3(x, t+�)− ũ3(x, t))2 dx

= ∑
M∈T

|M|(un1(t)
3,j −un0(t)

3,j )2

= ∑
M∈T

|M|(un1(t)
3,j −un0(t)

3,j )(un1(t)
3,j −un0(t)

3,j )

= ∑
M∈T

(un1(t)
3,j −un0(t)

3,j )
n1(t)∑

n=n0(t)+1
|M|(un

3,j −un−1
3,j )

= ∑
M∈T

(un1(t)
3,j −un0(t)

3,j )
N�t∑

n=1
�n(t, t+�)|M|(un

3,j −un−1
3,j )

= A1(t)+A2(t)

with

A1(t) := ∑
M∈T

(un1(t)
3,j −un0(t)

3,j )
N�t∑

n=1
�n(t, t+�)|M|[−�tke�

n
wj�1(un

1,j)un
3,j]

A2(t) := ∑
M∈T

(un1(t)
3,j −un0(t)

3,j )
N�t∑

n=1
�n(t, t+�)|M|�s[(�2 ◦�2)(un+1

2,j )−(�2 ◦�2)(un
2,j)]

Thus, we estimate the first term

∫ T−�

0
A1(t) dt �

N�t∑
n=1

�t

[ ∑
M∈(T)

(un1(t)
3,j −un0(t)

3,j )|M|ke�
n
wj�1(un

1,j)un
3,j

∫ T−�

0
�n(t, t+�) dt

]

� (2T‖u3‖∞|�|ke‖�w‖∞‖�1‖∞‖u3‖∞)�

� C�

Finally, with the same argument, we deduce that there exists a constant C>0 such that
∫ T−�

0 A2(t) dt�C�. �

Theorem 3
Under the assumptions (A1)–(A7) the approximate solution (u2h, u3h) given by the scheme (21)–(22) converges to (u2, u3) in L2(QT )×
L2(QT ) as h and �t tend to zero.

Proof
The proof follows the ideas for Theorem 2. In order to prove the convergence of u2h :=u2h(x, t) :=un

2M and u3h :=u3h(x, t) :=un
3M, in

M×[tn, tn+1], toward the weak solution defined in Section (3.1.2), we will pass to the limit in the scheme (21)–(22).

Copyright © 2009 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2010, 33 1059–1077
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Convergence of u2h: Let us set �̃2h :=�2(u2h) on QT and �̃2h :=0 on R3\QT . From Propositions 4 and 5, and Lemma 4, we
have that (�̃2h)⊆L∞(R3)∩L2(R3). Then, applying Theorem 1 and Lemma 4, we have that (�̃2h) is relatively compact in L2(QT ).
Thus, there exists a subsequence, still denoted by (�̃2h), and there exists �∗

2 ∈L2(QT ) such that (�̃2h) converges to �∗
2 in L2(QT ).

Indeed, as (�̃2h)⊆L∞(QT ), this convergence holds in Lq(QT ) for all 1�q<∞. Furthermore, since �2 is nondecreasing, Theorem
18.2 in [41] gives that �∗

2 =�2(u∗
2), that is u∗

2 =�−1
2 (�∗

2). Therefore, (�2h) converges to �2(u∗
2) in L1(QT ), and even in Lp(QT ) for all

p∈ [0,∞).
Convergence of u3h: Let us set ũ3h :=u3h on QT and ũ3h :=0 on R3\QT . From Propositions 3 and 6, and Lemma 7, we have

that (ũ3h)⊆L∞(R3)∩L2(R3). Then, the first and second items of Theorem 1 are clearly satisfied with N=d+1, d =2, q=2 and
�=�×(0, T). On the other hand, for �∈R2 and �∈R, we have

‖ũ3h(·+�, ·+�)− ũ3h(·, ·)‖L2(R2+1)�‖ũ3h(·+�, ·)− ũ3h(·, ·)‖L2(R2+1) +‖ũ3h(·, ·+�)− ũ3h(·, ·)‖L2(R2+1)

About the first term of the right-hand side of this last inequality, there exists a bound C(|�|)>0, such that ‖ũ3h(·+�, ·)−
ũ3h(·, ·)‖L2(R2+1)�C(|�|) and C(|�|)→0 if |�|→0 (see [41, Lemma 18.3]). On the other hand, there exists a constant C>0, independent
of � and �, such that (Lemma 5)

‖ũ3h(·, ·+�)− ũ3h(·, ·)‖L2(R2+1)�C�

This yields the compactness of the sequence (ũ3h) in L2(QT ), that is, (ũ3h) is relatively compact in L2(QT ). Therefore, there exists a
subsequence, still denoted by (ũ3h), and there exists u∗

3 ∈L2(QT ) such that (u3h) converges to u∗
3 in L2(QT ). Indeed, as (u3h ⊆L∞(QT ),

this convergence holds in Lq(QT ) for all 1�q<∞. Therefore, (u3h) converges to u∗
3 in L1(QT ), and even in Lp(QT ) for all p∈ [0,∞).

It remains to be shown that (u∗
2, u∗

3) is a weak solution. Because, the proof follows the same lines of Theorem 2, it is enough to
mention that

∑
n,j

vn
j T̂2r =

∑
n,j

vn
j {ke�s|�t||M|�n

wj�1(un
1,j)un

3,j}→
∫

QT

ke�s�w�1(u1)u3v �

7. Computational experiments

In this section we present some two-dimensional numerical results provided by the scheme (20)–(22) for the model discussed in
the introduction. We consider a trapezoidal heap 3 m high and having a length of 15 m at the bottom (see Figure 1).

A linear function �c =kdCCu is assumed for the copper adsorption isotherm. Otherwise, we assume that the acid adsorption
isotherm is null, that is �a(c)≡0.

The parameter values are of the same order of magnitude as those reported in [1, 7]. First, we choose a velocity vector in the
direction of the gravity force (downward direction) with a magnitude given by uw = (18 / 36) ·10−5 m / s, and saturation parameter
value equal to sw =0.7(−); both parameters correspond to a mean of the numerical results reported in [7, 12]. Here, the porosity
is given by �=0.33(−) and the consumption factor is �=10−5(1 / s); the rest of the parameters are the same reported in [1, 7],

that is, ke =8.3 ·10−7 m3 / kg·s, kd =8.67 ·10−5 m3 / kg, �s =1800 kg / m3, 	s
c =0.62(−), Gs

c =2.9 ·10−3 kg / kg, C
0

H2SO4
=10(kg / m3),

C
0

Cu =0 kg / m3 and Cirr
H2SO4

=40 kg / m3.

For the discretization parameter, we consider the following: we choose a fixed step time given by �t =1 day, and we consider
three different meshes with different refinement: the first one, which is the coarsest mesh, is given by h=0.9226 m (192 triangles);
the second one is given by h=0.4613 m (768 triangles); and the finest one is given by h=0.2306 m (3072 triangles). See Figure 3(b).
In Figure 3(a), we can observe the Donald dual mesh with the control volumes for the coarsest case.
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Figure 3. Spacial discretization mesh: (a) Donald dual mesh and (b) grid refinement.

1
0

7
4

Copyright © 2009 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2010, 33 1059–1077



E. CARIAGA ET AL.

0 5 10 15
0

1

2

3

0 5 10 15
0

1

2

3

0 5 10 15
0

1

2

3

5

10

15

20

25

30

Figure 4. The acid concentration in the heap on the ninth day (t =9) for three different refinements of the mesh.

Figure 5. The first 5 days of evolution for the finest grid: (a) acid concentration; (b) liquid copper concentration; and (c) solid copper concentration.

Figure 4 shows the acid concentration evolution in the heap on the ninth day (t =9), for the three first refinement of the mesh.
We show 30 level curves, and we observe the smoothing of the curves with increasing refinement of the mesh, in agreement with
the proved convergence of the method.

In Figure 5, we show the evolution during the first 5 days of the heap leaching process, for the acid (Figure 5(a)), the liquid
copper (Figure 5(b)) and the solid copper (Figure 5(c)), considering the finest mesh.

Numerically, we observe that the acid penetrates fast into the heap, being still concentrated at the top of the heap leaching,
despite the lapse of the day (Figure 5(a)). Note also that the acid concentration is lower at the extremes of the heap bottom. On
the other hand, we see in Figure 5(a) that the copper in solution is enriching through the oxidation process (b), which increases
the concentration solution copper in the ore (c). Finally, we note that in the fifth day the concentration of both solution and the
ore is higher in copper at the bottom of the heap, exactly where the acid is rarefied.
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8. Conclusions

A two-dimensional mathematical model was developed and implemented to describe the leaching of copper tailings using sulfuric
acid as a leaching agent. The model allows the leaching phenomenon to be described for different types of flow patterns for the
leaching solution, and, particularly, a pattern established by the feeding system of the leaching solution, and the recovery of the
copper-bearing solution at the bottom.

Each of the physico-chemical phenomena occurring during the leaching process was identified and analyzed. These phenomena
may be summarized as follows: transport of sulfuric acid, reaction between the acid and the copper ore particles present in the solid
matrix and transport of the copper solution. The acid is then usually further processed by solvent extraction and electrowinning.
Mathematically, the model leads to two decoupled problems: the so-called model problem A, consisting of a degenerate convection–
diffusion equation for a quantity equivalent to the volumetric concentration of the solvent (sulfuric acid) and model problem B,
which consists of a similar degenerate convection–diffusion equation for the copper concentration in the liquid, which is coupled
with an ODE describing the copper transport in the solid phase.

Thus, we present here a convergence analysis for a vertex-centered finite volume scheme as a numerical approximation of the
system of equations. The convergence proof in L2-strong includes the degenerate case. Finally, we give some numerical results in
accordance with the engineering literature examples [1, 3, 7].

The results show that the model and its numerical approximation predict in a satisfactory manner the major trends exhibited
by the phenomena studied, that is the evolution in time of the acid concentration and copper concentration in the liquid solution
removed from the tailings. In addition, the model gives, for the entire domain, the spatial distribution of the acid concentration
and copper concentration in the solution and the copper concentration in the solid phase.
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