CASANOVA KATNY, MARIA ANGELICA

Loading...
Profile Picture
Email Address
Birth Date
Research Projects
Organizational Units
Job Title
Last Name
CASANOVA KATNY
First Name
MARIA ANGELICA
Name

Search Results

Now showing 1 - 5 of 5
Loading...
Thumbnail Image
Publication

Soluble carbohydrate content variation in Sanionia uncinata and Polytrichastrum alpinum, two Antarctic mosses with contrasting desiccation capacities

, CASANOVA KATNY, MARIA ANGELICA, Zuniga-Gonzalez, Paz, Zuniga, Gustavo E., Pizarro, Marisol, Casanova-Katny, Angelica

Background: Cryptogamic vegetation dominates the ice-free areas along the Antarctic Peninsula. The two mosses Sanionia uncinata and Polytrichastrum alpinum inhabit soils with contrasting water availability. Sanionia uncinata grows in soil with continuous water supply, while P. alpinum grows in sandy, non-flooded soils. Desiccation and rehydration experiments were carried out to test for differences in the rate of water loss and uptake, with non-structural carbohydrates analysed to test their role in these processes. Results: Individual plants of S. uncinata lost water 60 % faster than P. alpinum; however, clumps of S. uncinata took longer to dry than those of P. alpinum (11 vs. 5 h, respectively). In contrast, rehydration took less than 10 min for both mosses. Total non-structural carbohydrate content was higher in P. alpinum than in S. uncinata, but sugar levels changed more in P. alpinum during desiccation and rehydration (60-50 %) when compared to S. uncinata. We report the presence of galactinol (a precursor of the raffinose family) for the first time in P. alpinum. Galactinol was present at higher amounts than all other non-structural sugars. Conclusions: Individual plants of S. uncinata were not able to retain water for long periods but by growing and forming carpets, this species can retain water the longest. In contrast individual P. alpinum plants required more time to lose water than S. uncinata, but as moss cushions they suffered desiccation faster than the later. On the other hand, both species rehydrated very quickly. We found that when both mosses lost 50 % of their water, carbohydrates content remained stable and the plants did not accumulate non-structural carbohydrates during the desiccation prosses as usually occurs in vascular plants. The raffinose family oligosaccarides decreased during desiccation, and increased during rehydration, suggesting they function as osmoprotectors.

Loading...
Thumbnail Image
Publication

Antarctic Lichens under Long-Term Passive Warming: Species-Specific Photochemical Responses to Desiccation and Heat Shock Treatments

, CASANOVA KATNY, MARIA ANGELICA, Marin, Catalina, Bartak, Milos, Palfner, Gotz, Vergara-Barros, Pablo, Fernandoy, Francisco, Hajek, Josef, Casanova-Katny, Angelica

Climate warming in the Antarctic tundra will affect locally dominant cryptogams. Being adapted to low temperatures and freezing, little is known about the response of the polar lichens' primary photochemistry to warming and desiccation. Since 2008, we have monitored the ecophysiological responses of lichens to the future warming scenario during a long-term warming experiment through open top chambers (OTCs) on Fildes Peninsula. We studied the primary photochemical response (potential Fv/Fm and effective efficiency of photosystem II YPSII) of different lichen taxa and morphotypes under desiccation kinetics and heat shock experiments. As lichens grow slowly, to observe changes during warming we methodologically focused on carbon and nitrogen content as well as on the stable isotope ratios. Endemic Himantormia lugubris showed the strongest effect of long-term warming on primary photochemistry, where PSII activity occurred at a lower %RWC inside the OTCs, in addition to higher Fv/Fm values at 30 degrees C in the heat shock kinetic treatment. In contrast, Usnea aurantiaco-atra did not show any effect of long-term warming but was active at a thallus RWC lower than 10%. Both Cladonia species were most affected by water stress, with Cladonia aff. gracilis showing no significant differences in primary photochemical responses between the warming and the control but a high sensibility to water deficiency, where, at 60% thallus RWC, the photochemical parameters began to decrease. We detected species-specific responses not only to long-term warming, but also to desiccation. On the other hand, the carbon content did not vary significantly among the species or because of the passive warming treatment. Similarly, the nitrogen content showed non-significant variation; however, the C/N ratio was affected, with the strongest C/N decrease in Cladonia borealis. Our results suggest that Antarctic lichens can tolerate warming and high temperature better than desiccation and that climate change may affect these species if it is associated with a decrease in water availability.

Thumbnail
Publication

Diversity and functionality of soil prokaryotic communities in antarctic volcanic soils: insights from penguin-influenced environments

, CASANOVA KATNY, MARIA ANGELICA, Segura, Diego, Jordaan, Karen, Díez, Beatriz, Tamayo-Leiva, Javier, Doetterl, Sebastian, Wasner, Daniel, Cifuentes-Anticevic, Jerónimo, Casanova-Katny, Angélica

In the nutrient-limited Antarctic terrestrial habitat, penguins transfer a significant amount of nutrients from the marine to the terrestrial ecosystem through their depositions (i.e., guano). This guano influences soil physicochemical properties, leading to the formation of ornithogenic soil rich in nutrients and organic matter. We hypothesize that soil prokaryotic communities will be strongly influenced by the contribution of nitrogenous nutrients from penguin rookeries, maintaining the influence over long distances. The objective was to establish how the soil prokaryotic diversity and community structure change with distance from a penguin colony, which provides large amounts of guano and nitrogenous compounds, and to study the effects of these nutrients on the functional role of these communities. Methods include volcanic soil sampling along a 1200 m transect from the penguin active rookery and the characterization of soil nutrient content and soil prokaryotic communities using 16S rRNA high-throughput amplicon sequencing. In contrast to our hypothesis, the results showed that the impact of guano from the penguin colony was restricted to the first 300 m. Probably because the penguin rookery was sheltered, strong wind and wind direction did not affect the transport of nutrients from the penguin rookery. Areas close to the penguin rookery were dominated by Proteobacteria and Bacteroidetes, while areas situated further away were dominated by Acidobacteria, Actinobacteria, Chloroflexi, Gemmatimonadetes, Nitrospirae, and Planctomycetes. Beta diversity analysis among the soil prokaryotic communities revealed a high degree of community heterogeneity, strongly associated with N compound characteristics (NH4, NO3, and %N), C, and pH. Inferences from N metabolism genes suggest a high potential of the microbial community for dissimilatory nitrate reduction genes (DNRA) to ammonium, assimilatory nitrate reduction (ANR), and denitrification. Although it is assumed that the nitrogenous compounds of the penguin colonies reach long distances and affect the prokaryotic community, this effect can vary with wind directions or the morphology of the site, reducing the impact of the guano over long distances, as our results indicate. On the other hand, functional predictions give some clues about the main actors in nitrogen cycling, through processes like dissimilatory nitrate reduction, assimilatory nitrate reduction, and denitrification. © 2024 Elsevier B.V., All rights reserved.

Thumbnail
Publication

Bayesian methods for comparing species physiological and ecological response curves

, CASANOVA KATNY, MARIA ANGELICA, Ashcroft, Michael B., Casanova-Katny, Angelica, Mengersen, Kerrie, Rosenstiel, Todd N., Turnbull, Johanna D., Wasley, Jane, Waterman, Melinda J., Zuniga, Gustavo E., Robinson, Sharon A.

Many ecological questions require information on species' optimal conditions or critical limits along environmental gradients. These attributes can be compared to answer questions on niche partitioning, species coexistence and niche conservatism. However, these comparisons are unconvincing when existing methods do not quantify the uncertainty in the attributes or rely on assumptions about the shape of species' responses to the environmental gradient. The aim of this study was to develop a model to quantify the uncertainty in the attributes of species response curves and allow them to be tested for substantive differences without making assumptions about the shape of the responses. We developed a model that used Bayesian penalised splines to produce and compare response curves for any two given species. These splines allow the data to determine the shape of the response curves rather than making a priori assumptions. The models were implemented using the R2OpenBUGS package for R, which uses Markov Chain Monte Carlo simulation to repetitively fit alternative response curves to the data. As each iteration produces a different curve that varies in optima, niche breadth and limits, the model estimates the uncertainty in each of these attributes and the probability that the two curves are different. The models were tested using two datasets of mosses from Antarctica. Both datasets had a high degree of scatter, which is typical of ecological research. This noise resulted in considerable uncertainty in the optima and limits of species response curves, but substantive differences were found. Schistidium antarctici was found to inhabit wetter habitats than Ceratodon purpureus, and Polytrichastrum alpinum had a lower optimal temperature for photosynthesis than Chorisodontium aciphyllum under high light conditions. Our study highlights the importance of considering uncertainty in physiological optima and other attributes of species response curves. We found that apparent differences in optima of 7.5 degrees C were not necessarily substantive when dealing with noisy ecological data, and it is necessary to consider the uncertainty in attributes when comparing the curves for different species. The model introduced here could increase the robustness of research on niche partitioning, species coexistence and niche conservatism. (C) 2016 Elsevier B.V. All rights reserved.

Loading...
Thumbnail Image
Publication

Reproductive output of mosses under experimental warming on Fildes Peninsula, King George Island, maritime Antarctica

, CASANOVA KATNY, MARIA ANGELICA, Casanova-Katny, A., Torres-Mellado, G. A., Eppley, S. M.

Background: Mosses dominate much of the vegetation in the Antarctic, but the effect of climatic change on moss growth and sexual reproduction has scarcely been studied. In Antarctica, mosses infrequently produce sporophytes; whether this is due to physiological limitation or an adaptive response is unknown. We studied the effect of experimental warming (with Open Top Chambers, OTCs) on sporophyte production on Fildes Peninsula, King George Island for four moss species (Bartramia patens, Hennediella antarctica, Polytrichastrum alpinum, and Sanionia georgicouncinata). To determine whether reducing cold stress increases sexual reproduction as would be predicted if sex is being constrained due to physiological limitations, we counted sporophytes for these four moss species in OTC and control plots during two years. Also, we measured sporophyte size for a smaller sample of sporophytes of two species, B. patens and H. antarctica, in the OTC and control plots. Results: After 2 years of the experimental treatment, maximum daily air temperature, but not daily mean air temperature, was significantly higher inside OTCs than outside. We found a significant species by treatment effect for sporophyte production, with more sporophytes produced in OTCs compared with controls for B. patens and P. alpinum. Also, sporophytes of B. patens and H. antarctica were significantly larger in the OTCs compared with the control plots. Conclusions: Our results suggest that the lack of sexual reproduction in these Antarctic mosses is not adaptive but is constrained by current environmental conditions and that ameliorating conditions, such as increased temperature may affect sexual reproduction in many Antarctic mosses, altering moss population genetics and dispersal patterns.