A Gamma-Type Distribution with Applications

datacite.alternateIdentifier.citationSYMMETRY-BASEL,Vol.12,,2020
datacite.alternateIdentifier.doi10.3390/sym12050870
datacite.creatorIriarte, Yuri A.
datacite.creatorVarela, Hector
datacite.creatorGomez, Hector J.
datacite.creatorGomez, Hector W.
datacite.date2020
datacite.subject.englishasymmetry
datacite.subject.englishgeneralized gamma distribution
datacite.subject.englishkurtosis
datacite.subject.englishmaximum likelihood estimation
datacite.subject.englishslash distribution
datacite.titleA Gamma-Type Distribution with Applications
dc.date.accessioned2021-04-30T16:34:19Z
dc.date.available2021-04-30T16:34:19Z
dc.description.abstractThis article introduces a new probability distribution capable of modeling positive data that present different levels of asymmetry and high levels of kurtosis. A slashed quasi-gamma random variable is defined as the quotient of independent random variables, a generalized gamma is the numerator, and a power of a standard uniform variable is the denominator. The result is a new three-parameter distribution (scale, shape, and kurtosis) that does not present the identifiability problem presented by the generalized gamma distribution. Maximum likelihood (ML) estimation is implemented for parameter estimation. The results of two real data applications revealed a good performance in real settings.
dc.identifier.urihttp://repositoriodigital.uct.cl/handle/10925/3029
dc.language.isoen
dc.publisherMDPI
dc.sourceSYMMETRY-BASEL
oaire.resourceTypeArticle
uct.catalogadorWOS
uct.indizacionSCI
Files