Extended Half-Power Exponential Distribution with Applications to COVID-19 Data

datacite.alternateIdentifier.citationMATHEMATICS,Vol.10,,2022
datacite.alternateIdentifier.doi10.3390/math10060942
datacite.creatorSantoro, Karol, I
datacite.creatorGomez, Hector J.
datacite.creatorBarranco Chamorro, Inmaculada
datacite.creatorGomez, Hector W.
datacite.date2022
datacite.subject.englishsymmetric distributions
datacite.subject.englishnonnegative distributions
datacite.subject.englishkurtosis
datacite.subject.englishmaximum likelihood
datacite.subject.englishCOVID-19 data
datacite.titleExtended Half-Power Exponential Distribution with Applications to COVID-19 Data
dc.date.accessioned2022-04-18T17:05:50Z
dc.date.available2022-04-18T17:05:50Z
dc.description.abstractIn this paper, the Extended Half-Power Exponential (EHPE) distribution is built on the basis of the Power Exponential model. The properties of the EHPE model are discussed: the cumulative distribution function, the hazard function, moments, and the skewness and kurtosis coefficients. Estimation is carried out by applying maximum likelihood (ML) methods. A Monte Carlo simulation study is carried out to assess the performance of ML estimates. To illustrate the usefulness and applicability of EHPE distribution, two real applications to COVID-19 data in Chile are discussed.
dc.identifier.urihttps://repositoriodigital.uct.cl/handle/10925/4542
dc.language.isoen
dc.publisherMDPI
dc.sourceMATHEMATICS
oaire.resourceTypeArticle
uct.indizacionSCI
Files