An Asymmetric Bimodal Distribution with Application to Quantile Regression

datacite.alternateIdentifier.citationSYMMETRY-BASEL,Vol.11,,2019
datacite.alternateIdentifier.doi10.3390/sym11070899
datacite.creatorGomez, Yolanda M.
datacite.creatorGomez Deniz, Emilio
datacite.creatorVenegas, Osvaldo
datacite.creatorGallardo, Diego, I
datacite.creatorGomez, Hector W.
datacite.date2019
datacite.subject.englishasymmetric bimodal distribution
datacite.subject.englishbimodal
datacite.subject.englishmaximum likelihood
datacite.titleAn Asymmetric Bimodal Distribution with Application to Quantile Regression
dc.date.accessioned2021-04-30T16:59:13Z
dc.date.available2021-04-30T16:59:13Z
dc.description.abstractIn this article, we study an extension of the sinh Cauchy model in order to obtain asymmetric bimodality. The behavior of the distribution may be either unimodal or bimodal. We calculate its cumulative distribution function and use it to carry out quantile regression. We calculate the maximum likelihood estimators and carry out a simulation study. Two applications are analyzed based on real data to illustrate the flexibility of the distribution for modeling unimodal and bimodal data.
dc.identifier.urihttp://repositoriodigital.uct.cl/handle/10925/3737
dc.language.isoen
dc.publisherMDPI
dc.sourceSYMMETRY-BASEL
oaire.resourceTypeArticle
uct.catalogadorWOS
uct.indizacionSCI
Files