Identification of shock profile solutions for bidisperse suspensions

datacite.alternateIdentifier.citationBULLETIN OF THE BRAZILIAN MATHEMATICAL SOCIETY,Vol.47,105-115,2016
datacite.alternateIdentifier.doi10.1007/s00574-016-0125-2
datacite.creatorBerres, Stefan
datacite.creatorCastaneda, Pablo
datacite.date2016
datacite.subject.englishsystem of nonlinear conservation laws
datacite.subject.englishbidisperse suspension
datacite.subject.englishcharacteristic velocities
datacite.subject.englishcontact manifold
datacite.subject.englishHugoniot locus
datacite.subject.englishRiemann problem
datacite.titleIdentification of shock profile solutions for bidisperse suspensions
dc.date.accessioned2021-04-30T16:34:18Z
dc.date.available2021-04-30T16:34:18Z
dc.description.abstractThis contribution is a condensed version of an extended paper, where a contact manifold emerging in the interior of the phase space of a specific hyperbolic system of two nonlinear conservation laws is examined. The governing equations are modelling bidisperse suspensions, which consist of two types of small particles differing in size and viscosity that are dispersed in a viscous fluid. Based on the calculation of characteristic speeds, the elementary waves with the origin as left Riemann datum and a general right state in the phase space are classified. In particular, the dependence of the solution structure of this Riemann problem on the contact manifold is elaborated.
dc.identifier.urihttp://repositoriodigital.uct.cl/handle/10925/3006
dc.language.isoen
dc.publisherSPRINGER HEIDELBERG
dc.sourceBULLETIN OF THE BRAZILIAN MATHEMATICAL SOCIETY
oaire.resourceTypeArticle
uct.catalogadorWOS
uct.indizacionSCI
Files