Unsupervised local regressive attributes for pedestrian re-identification
datacite.alternateIdentifier.citation | Lecture Notes in Computer Science, Vol. 10657 LNCS, 517-524, 2018 | en_US |
datacite.alternateIdentifier.doi | 10.1007/978-3-319-75193-1_62 | en_US |
datacite.creator | Peralta Márquez, Billy | |
datacite.creator | Caro Saldivia, Luis | |
datacite.creator | Soto, Alvaro | |
datacite.date | 2018 | |
datacite.subject | Descubrimiento de atributos | en_US |
datacite.subject | Re identificación pedestre | en_US |
datacite.subject | Aprendizaje no supervisado | en_US |
datacite.title | Unsupervised local regressive attributes for pedestrian re-identification | en_US |
dc.date.accessioned | 2020-04-15T00:26:44Z | |
dc.date.available | 2020-04-15T00:26:44Z | |
dc.description.abstract | Discovering of attributes is a challenging task in computer vision due to uncertainty about the attributes, which is caused mainly by the lack of semantic meaning in image parts. A usual scheme for facing attribute discovering is to divide the feature space using binary variables. Moreover, we can assume to know the attributes and by using expert information we can give a degree of attribute beyond only two values. Nonetheless, a binary variable could not be very informative, and we could not have access to expert information. In this work, we propose to discover linear regressive codes using image regions guided by a supervised criteria where the obtained codes obtain better generalization properties. We found that the discovered regressive codes can be successfully re-used in other visual datasets. As a future work, we plan to explore richer codification structures than lineal mapping considering efficient computation | en_US |
dc.format | en_US | |
dc.identifier.uri | http://repositoriodigital.uct.cl/handle/10925/2162 | |
dc.language.iso | en | en_US |
dc.source | Lecture Notes in Computer Science | en_US |
oaire.resourceType | Artículo de Revista | en_US |
uct.catalogador | pop | en_US |
uct.comunidad | Ingeniería | en_US |
uct.indizacion | SCOPUS | en_US |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- Peralta_Caro_Soto_Unsuperviced_2018.pdf
- Size:
- 434.93 KB
- Format:
- Adobe Portable Document Format
- Description:
- Lectura de los datos del documento
License bundle
1 - 1 of 1
Loading...
- Name:
- license.txt
- Size:
- 803 B
- Format:
- Item-specific license agreed upon to submission
- Description: