Microbial Community Composition in Take-All Suppressive Soils
Microbial Community Composition in Take-All Suppressive Soils
Authors
Durán, Paola
Tortella, Gonzalo
Viscardi, Sharon
Barra, Patricio Javier
Carrión, Victor
de La Luz Mora, María
Pozo, María José
Tortella, Gonzalo
Viscardi, Sharon
Barra, Patricio Javier
Carrión, Victor
de La Luz Mora, María
Pozo, María José
Profesor Guía
Authors
Date
Datos de publicación:
10.3389/fmicb.2018.02198
Frontiers in Microbiology, Vol.9, 2198, 2018
Frontiers in Microbiology, Vol.9, 2198, 2018
Tipo de recurso
Artículo de Revista
Facultad de Ciencias de la Salud
Keywords
Gaeumannomyces graminis - Take all - Suppressive soils - Real time PCR - Microbial diversity - Suelos supresivos - Diversidad microbiana
Materia geográfica
Chile
Collections
Abstract
Gaeumannomyces graminis var. tritici (Ggt) is the main soilborne factor that affects wheat production around the world. Recently we reported the occurrence of six suppressive soils in monoculture areas from indigenous "Mapuche" communities, and evidenced that the suppression relied on the biotic component of those soils. Here, we compare the rhizosphere and endosphere microbial community structure (total bacteria, actinomycetes, total fungi, and ascomycetes) of wheat plants grown in suppressive and conducive soils. Our results suggested that Ggt suppression could be mediated mostly by bacterial endophytes, rather than rhizosphere microorganisms, since the community structure was similar in all suppressive soils as compared with conducive. Interestingly, we found that despite the lower incidence of take-all disease in suppressive soils, the Ggt concentration in roots was not significantly reduced in all suppressive soils compared to those growing in conducive soil. Therefore, the disease suppression is not always related to a reduction of the pathogen biomass. Furthermore, we isolated endophytic bacteria from wheat roots growing in suppressive soils. Among them we identified Serratia spp. and Enterobacter spp. able to inhibit Ggt growth in vitro. Since the disease, but not always pathogen amount, was reduced in the suppressive soils, we propose that take all disease suppressiveness is not only related to direct antagonism to the pathogen.