Intra-element versus inter-element crack propagation: the numerical extensometer approach

datacite.alternateIdentifier.citationJOURNAL OF THE BRAZILIAN SOCIETY OF MECHANICAL SCIENCES AND ENGINEERING,Vol.46,2024
datacite.alternateIdentifier.doi10.1007/s40430-024-04951-6
datacite.creatorAmorim, David Leonardo Nascimento de Figueiredo
datacite.creatorPicon, Ricardo
datacite.creatorVieira, Camila de Sousa
datacite.creatorFlorez Lopez, Julio
datacite.date2024
datacite.subject.englishCohesive fracture mechanics
datacite.subject.englishFinite element method
datacite.subject.englishIntra-element cracking model
datacite.subject.englishTunnel lining segment
datacite.titleIntra-element versus inter-element crack propagation: the numerical extensometer approach
dc.date.accessioned2024-05-27T18:27:19Z
dc.date.available2024-05-27T18:27:19Z
dc.description.abstractNumerical modeling of crack propagation is still a pressing issue in fracture mechanics. The finite element method and its variations are usually used for this purpose. One of the possibilities for modeling crack propagation is the well-known cohesive fracture mechanics. Generally, commercial finite element programs use a predefined cohesive zone, i.e., inter-element cracking modeling. Alternatively, this paper proposes a numerical strategy where the cohesive cracks can nucleate and propagate at any finite element, i.e., intra-element cracking modeling. The numerical results show a good agreement between both models when the cohesive zone is predefined. Moreover, when compared to a bending experiment on a tunnel lining segment where cracks can appear anywhere, the proposed model (the intra-element cohesive cracking model) presents good accuracy where different cracks nucleate and propagate.
dc.identifier.urihttps://repositoriodigital.uct.cl/handle/10925/5719
dc.language.isoen
dc.publisherSPRINGER HEIDELBERG
dc.sourceJOURNAL OF THE BRAZILIAN SOCIETY OF MECHANICAL SCIENCES AND ENGINEERING
oaire.resourceTypeArticle
uct.indizacionSCI
Files