On harmonic Bloch-type mappings

datacite.alternateIdentifier.citationCOMPLEX VARIABLES AND ELLIPTIC EQUATIONS,Vol.62,1081-1092,2017
datacite.alternateIdentifier.doi10.1080/17476933.2016.1265951
datacite.creatorEfraimidis, I.
datacite.creatorGaona, J.
datacite.creatorHernandez, R.
datacite.creatorVenegas Torres, Óscar
datacite.date2017
datacite.subject.englishBloch functions
datacite.subject.englishharmonic functions
datacite.subject.englishJacobian
datacite.subject.englishunivalent functions
datacite.subject.englishschlicht radius
datacite.subject.englishgrowth estimates
datacite.subject.englishcoefficient estimates
datacite.subject.english30C25
datacite.subject.english30C50
datacite.subject.english30D45
datacite.subject.english30H30
datacite.titleOn harmonic Bloch-type mappings
dc.date.accessioned2021-04-30T16:59:12Z
dc.date.available2021-04-30T16:59:12Z
dc.description.abstractLet f be a complex-valued harmonicmapping defined in the unit disk D. We introduce the following notion: we say that f is a Bloch-type function if its Jacobian satisfies This gives rise to a new class of functions which generalizes and contains the well-known analytic Bloch space. We give estimates for the schlicht radius, the growth and the coefficients of functions in this class. We establish an analogue of the theorem which, roughly speaking, states that for. analytic log. is Bloch if and only if. is univalent.
dc.identifier.urihttp://repositoriodigital.uct.cl/handle/10925/3730
dc.language.isoen
dc.publisherTAYLOR & FRANCIS LTD
dc.sourceCOMPLEX VARIABLES AND ELLIPTIC EQUATIONS
oaire.resourceTypeArticle
uct.catalogadorWOS
uct.indizacionSCI
Files