Differential mechanisms between traditionally established and new highbush blueberry (Vaccinium corymbosum L.) cultivars reveal new insights into manganese toxicity resistance
Differential mechanisms between traditionally established and new highbush blueberry (Vaccinium corymbosum L.) cultivars reveal new insights into manganese toxicity resistance
Authors
Gonzalez Villagra, Jorge
Luengo Escobar, Ana
Ribera Fonseca, Alejandra
Cárcamo Fincheira, Paz
Patricia Omena Garcia, Rebeca
Nunes Nesi, Adriano
Inostroza Blancheteau, Claudio
Alberdi, Miren
Reyes Diaz, Marjorie
Luengo Escobar, Ana
Ribera Fonseca, Alejandra
Cárcamo Fincheira, Paz
Patricia Omena Garcia, Rebeca
Nunes Nesi, Adriano
Inostroza Blancheteau, Claudio
Alberdi, Miren
Reyes Diaz, Marjorie
Authors
Date
Datos de publicación:
10.1016/j.plaphy.2020.11.034
Keywords
Collections
Abstract
In acid soils, manganese (Mn) concentration increases, becoming toxic to plants. Mn toxicity differentially affects physiological processes in highbush blueberry (Vaccinium corymbosum L.) cultivars. However, the mechanisms involved in Mn toxicity of the new and traditionally established cultivars are unknown. To understand Mn toxicity mechanisms, four traditionally established (Legacy, Brigitta, Duke, and Star) cultivars and two recently introduced to Chile (Camellia and Cargo) were grown under hydroponic conditions subjected to control Mn (2 mu M) and Mn toxicity (1000 mu M). Physiological, biochemical, and molecular parameters were evaluated at 0, 7, 14, and 21 days. We found that the relative growth rate was reduced in almost all blueberry cultivars under Mn toxicity, except Camellia, with Star being the most affected. The photosynthetic parameters were reduced only in Star by Mn treatment. Leaf Mn concentrations increased in all cultivars, exhibiting the lowest levels in Camellia and Cargo. Brigitta and Duke exhibited higher beta-carotene levels, while Cargo exhibited a reduction under toxic Mn. In Legacy, lutein levels increased under Mn toxicity. Traditionally established cultivars exhibited higher antioxidant activity than the new cultivars under Mn toxicity. The Legacy and Duke cultivars increased VcMTP4 expression with Mn exposure time. A multivariate analysis separated Legacy and Duke from Camellia; Star and Cargo; and Brigitta. Our study demonstrated that Mn toxicity differentially affects physiological, biochemical, and molecular features in the new and traditionally established cultivars, with Legacy, Duke, Camellia, and Cargo as the Mn-resistant cultivars differing in their Mn-resistance mechanisms and Star as the Mn-sensitive cultivar.