Experimental and density functional theory study of the Li+ desorption in spinel/layered lithium manganese oxide nanocomposites using HCl

datacite.creatorPulido, Ruth
datacite.creatorNaveas, Nelson
datacite.creatorMartín-Palma, Raúl
datacite.creatorGraber, Teófilo
datacite.creatorBrito, Iván
datacite.creatorHernández-Montelongo, Jacobo
datacite.creatorManso, Miguel
datacite.date2022
datacite.rightsAcceso Abierto
datacite.subject.englishLithium desorption
datacite.subject.englishLithium manganese oxide
datacite.subject.englishLi2MnO3
datacite.subject.englishLithium ion-sieves
datacite.subject.englishDensity functional theory
datacite.subject.englishNudged elastic band
datacite.titleExperimental and density functional theory study of the Li+ desorption in spinel/layered lithium manganese oxide nanocomposites using HCl
dc.date.accessioned2024-12-13T15:49:33Z
dc.date.available2024-12-13T15:49:33Z
dc.description.abstractenThe increasing demand for portable electronic devices and batteries has led to a growing interest in Li com pounds. Lithium manganese oxides (LMO) are the most popular lithium-ion sieves (LIS) precursor materials due to their high lithium adsorption capacity and selectivity. The key step in forming LIS is the lithium desorption process from the crystalline lattice of the LMO. However, this process has been less researched than its coun terpart, the lithium adsorption process. In this line, there are some studies describing the process of lithium desorption in acid media from spinel-type LMO. Nevertheless, there is no evidence of the lithium desorption process of layered-type lithium-rich LMO in acidic media. In the present work, we investigated the lithium desorption behavior of different LMO nanocomposites in HCl. LMOs with different Li/Mn ratios were synthesized by promoting the lithium-rich layered phase (Li2MnO3). The morphology, size, crystallinity, chemical composition, and surface properties of LMO nanocomposites and delithiated products were studied. In addition, density functional theory (DFT) calculations were carried out to understand the differential lithium desorption behavior, confirming its dependence on the Li/Mn ratio of the LMO nanocomposites. Herein, we demonstrate that the lithium diffusion energy barrier plays a major role during lithium desorption from LMO nanocomposites. Our results suggest that an exhaustive characterization of lithium precursor materials (LMO) is necessary to select a suitable desorption process.
dc.identifier.doi10.1016/j.cej.2022.136019
dc.identifier.issn1385-8947
dc.identifier.urihttps://repositoriodigital.uct.cl/handle/10925/6121
dc.language.isoen
dc.publisherElsevier
dc.rightsObra bajo licencia Creative Commons Atribución 4.0 Internacional
dc.sourceChemical Engineering Journal
oaire.citationEndPage14
oaire.citationStartPage1
oaire.citationTitleChemical Engineering Journal
oaire.citationVolume441
oaire.resourceTypeArtículo Original
uct.catalogadorbcm
uct.comunidadIngeniería
uct.facultadFacultad de Ingeniería
uct.indizacionSCOPUS
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Pulido_Naveas_Martín-Palma_Graber_Brito_Hernández-Montelongo_Manso_Experimental_2022_Vol441n(X)_1-14.pdf
Size:
12.34 MB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
803 B
Format:
Item-specific license agreed upon to submission
Description: