High-Order Commensurate Zwitterionic Quinonoid Phase Induces a Nanoscale Dipole Lattice on Graphene
High-Order Commensurate Zwitterionic Quinonoid Phase Induces a Nanoscale Dipole Lattice on Graphene
Authors
Nassar, Gaelle
Cortes Arriagada, Diego
Sanhueza Vega, Luis
Landois, Perine
Paillet, Matthieu
Hrich, Haitham
Contreras, Sylvie
Siri, Olivier
Pascal, Simon
Masson, Laurence
Becker, Conrad
Ranguis, Alain
Parret, Romain
Canard, Gabriel
Leoni, Thomas
Cortes Arriagada, Diego
Sanhueza Vega, Luis
Landois, Perine
Paillet, Matthieu
Hrich, Haitham
Contreras, Sylvie
Siri, Olivier
Pascal, Simon
Masson, Laurence
Becker, Conrad
Ranguis, Alain
Parret, Romain
Canard, Gabriel
Leoni, Thomas
Profesor GuĆa
Authors
Date
Datos de publicaciĆ³n:
10.1021/acs.jpcc.4c01695
JOURNAL OF PHYSICAL CHEMISTRY C,Vol.128,9712-9721,2024
JOURNAL OF PHYSICAL CHEMISTRY C,Vol.128,9712-9721,2024
Tipo de recurso
Article
Keywords
Materia geogrƔfica
Collections
Abstract
Since the introduction of hybrid van der Waals heterostructures (h-vdWHs) for device architecture development, many vertically staked organic two-dimensional materials have been investigated in order to control transport properties. This article introduces a novel h-vdWH that achieves periodic interaction by the development of a superlattice. We describe a complete investigation of the diphenyl-functionalized p-benzoquinonemonoimine zwitterion on highly oriented pyrolytic graphite and monolayer graphene using high-resolution scanning tunneling microscopy images and numerical simulations. The molecular phase on both substrates exhibits a structurally identical antiparallel dipole alignment in a head-to-tail dimer configuration. Density functional theory calculations reveal that this molecular adsorption induces a local dipole at the graphene interface due to the rearrangement of the electron density distribution.