Spatial Function of Influence on Center Optimal Location Based on L-p-Norms

datacite.alternateIdentifier.citationCOMPUTATIONAL SCIENCE AND ITS APPLICATIONS - ICCSA 2017, PT IV,Vol.10407,652-661,2017
datacite.alternateIdentifier.doi10.1007/978-3-319-62401-3_47
datacite.creatorJosselin, Didier
datacite.creatorRojas Mora, Julio
datacite.creatorCiligot Travain, Marc
datacite.creatorGervasi, O
datacite.creatorMurgante, B
datacite.creatorMisra, S
datacite.creatorBorruso, G
datacite.creatorTorre, CM
datacite.creatorRocha, AMAC
datacite.creatorTaniar, D
datacite.creatorApduhan, BO
datacite.creatorStankova, E
datacite.creatorCuzzocrea, A
datacite.date2017
datacite.subject.englishSpatial influence function
datacite.subject.englishL-p-norm
datacite.subject.englishCenter optimal location
datacite.subject.englishSensitivity analysis
datacite.titleSpatial Function of Influence on Center Optimal Location Based on L-p-Norms
dc.date.accessioned2021-04-30T16:58:24Z
dc.date.available2021-04-30T16:58:24Z
dc.description.abstractWe propose a sensitivity analysis using generalized L-p-norm (Minkowski distance) applied on center optimal location (1 facility). The results show that there exists in one dimension an underlying (log) linear relation between influence and distance of the demand points on the center. New L-p-norms are emphasized with interesting properties in statistics (e.g. with p = 3) although they are not used in location optimization. The law we enhance is of interest in both statistics and and spatial analysis domains and highlights in a new way the impact of the metrics choice on the center location, through the induced spatial influence function, those metrics aiming at spatial equity (L-8), equality (L-2) or efficiency (L-1).
dc.identifier.urihttp://repositoriodigital.uct.cl/handle/10925/3658
dc.language.isoen
dc.publisherSPRINGER INTERNATIONAL PUBLISHING AG
dc.sourceCOMPUTATIONAL SCIENCE AND ITS APPLICATIONS - ICCSA 2017, PT IV
oaire.resourceTypeMeeting
uct.catalogadorWOS
uct.indizacionISTP
Files