Intestinal Transcriptome Analysis Reveals Enrichment of Genes Associated with Immune and Lipid Mechanisms, Favoring Soybean Meal Tolerance in High-Growth Zebrafish (Danio Rerio)
Intestinal Transcriptome Analysis Reveals Enrichment of Genes Associated with Immune and Lipid Mechanisms, Favoring Soybean Meal Tolerance in High-Growth Zebrafish (Danio Rerio)
Authors
Valenzuela, Luis
Pacheco, Sebastian
Rincon, Gonzalo
Pavez, Leonardo
Lam, Natalia
Hernandez, Adrian J.
Dantagnan, Patricio
Gonzalez, Felipe
Jilberto, Felipe
Ravanal, M. Cristina
Ramos, Cecilia
Garcia, Hector
Araneda, Cristian
Ulloa, Pilar E.
Pacheco, Sebastian
Rincon, Gonzalo
Pavez, Leonardo
Lam, Natalia
Hernandez, Adrian J.
Dantagnan, Patricio
Gonzalez, Felipe
Jilberto, Felipe
Ravanal, M. Cristina
Ramos, Cecilia
Garcia, Hector
Araneda, Cristian
Ulloa, Pilar E.
Profesor GuĆa
Authors
Date
Datos de publicaciĆ³n:
10.3390/genes12050700
GENES,Vol.12,,2021
GENES,Vol.12,,2021
Tipo de recurso
Article
Keywords
Materia geogrƔfica
Collections
Abstract
The molecular mechanisms underlying fish tolerance to soybean meal (SBM) remain unclear. Identifying these mechanisms would be beneficial, as this trait favors growth. Two fish replicates from 19 experimental families were fed fishmeal-(100FM) or SBM-based diets supplemented with saponin (50SBM + 2SPN) from juvenile to adult stages. Individuals were selected from families with a genotype-by-environment interaction higher (HG-50SBM + 2SPN, 170 +/- 18 mg) or lower (LG-50SBM + 2SPN, 76 +/- 10 mg) weight gain on 50SBM + 2SPN for intestinal transcriptomic analysis. A histological evaluation confirmed middle intestinal inflammation in the LG- vs. HG-50SBM + 2SPN group. Enrichment analysis of 665 differentially expressed genes (DEGs) identified pathways associated with immunity and lipid metabolism. Genes linked to intestinal immunity were downregulated in HG fish (mpx, cxcr3.2, cftr, irg1l, itln2, sgk1, nup61l, il22), likely dampening inflammatory responses. Conversely, genes involved in retinol signaling were upregulated (rbp4, stra6, nr2f5), potentially favoring growth by suppressing insulin responses. Genes associated with lipid metabolism were upregulated, including key components of the SREBP (mbtps1, elov5l, elov6l) and cholesterol catabolism (cyp46a1), as well as the downregulation of cyp7a1. These results strongly suggest that transcriptomic changes in lipid metabolism mediate SBM tolerance. Genotypic variations in DEGs may become biomarkers for improving early selection of fish tolerant to SMB or others plant-based diets.