A Bimodal Extension of the Epsilon-Skew-Normal Model
datacite.alternateIdentifier.citation | MATHEMATICS,Vol.11,,2023 | |
datacite.alternateIdentifier.doi | 10.3390/math11030507 | |
datacite.creator | Duarte, Juan | |
datacite.creator | Martinez Florez, Guillermo | |
datacite.creator | Gallardo, Diego Ignacio | |
datacite.creator | Venegas, Osvaldo | |
datacite.creator | Gomez, Hector W. | |
datacite.date | 2023 | |
datacite.subject.english | bimodality | |
datacite.subject.english | epsilon-skew-normal distribution | |
datacite.subject.english | maximum likelihood estimation | |
datacite.title | A Bimodal Extension of the Epsilon-Skew-Normal Model | |
dc.date.accessioned | 2023-06-08T15:48:18Z | |
dc.date.available | 2023-06-08T15:48:18Z | |
dc.description.abstract | This article introduces a bimodal model based on the epsilon-skew-normal distribution. This extension generates bimodal distributions similar to those produced by the mixture of normal distributions. We study the basic properties of this new family. We apply maximum likelihood estimators, calculate the information matrix and present a simulation study to assess parameter recovery. Finally, we illustrate the results to three real data sets, suggesting this new distribution as a plausible alternative for modelling bimodal data. | |
dc.identifier.uri | https://repositoriodigital.uct.cl/handle/10925/5340 | |
dc.language.iso | en | |
dc.publisher | MDPI | |
dc.source | MATHEMATICS | |
oaire.resourceType | Article | |
uct.indizacion | SCI |