Molecular regulation of aluminum resistance and sulfur nutrition during root growth

datacite.alternateIdentifier.citationPlanta, Vol.247, N°1, 27-39en_US
datacite.alternateIdentifier.doi10.1007/s00425-017-2805-6en_US
datacite.creatorAlarcón Poblete, Edith
datacite.creatorInostroza Blancheteau, Claudio
datacite.creatorAlberdi, Miren
datacite.creatorRengel, Zed
datacite.creatorReyes Diaz, Marjorie
datacite.date2018
datacite.subjectSulfuroen_US
datacite.subjectCisteínaen_US
datacite.subjectBiosíntesis de cisteínaen_US
datacite.titleMolecular regulation of aluminum resistance and sulfur nutrition during root growthen_US
dc.date.accessioned2020-06-24T15:06:34Z
dc.date.available2020-06-24T15:06:34Z
dc.description.abstractMain conclusion: Aluminum toxicity and sulfate deprivation both regulate microRNA395 expression, repressing its low-affinity sulfate transporter (SULTR2;1) target. Sulfate deprivation also induces the high-affinity sulfate transporter gene (SULTR12), allowing enhanced sulfate uptake. Few studies about the relationships between sulfate, a plant nutrient, and aluminum, a toxic ion, are available; hence, the molecular and physiological processes underpinning this interaction are poorly understood. The Al–sulfate interaction occurs in acidic soils, whereby relatively high concentrations of trivalent toxic aluminum (Al3+) may hamper root growth, limiting uptake of nutrients, including sulfur (S). On the other side, Al3+ may be detoxified by complexation with sulfate in the acid soil solution as well as in the root-cell vacuoles. In this review, we focus on recent insights into the mechanisms governing plant responses to Al toxicity and its relationship with sulfur nutrition, emphasizing the role of phytohormones, microRNAs, and ion transporters in higher plants. It is known that Al3+ disturbs gene expression and enzymes involved in biosynthesis of S-containing cysteine in root cells. On the other hand, Al3+ may induce ethylene biosynthesis, enhance reactive oxygen species production, alter phytohormone transport, trigger root growth inhibition and promote sulfate uptake under S deficiency. MicroRNA395, regulated by both Al toxicity and sulfate deprivation, represses its low-affinity Sulfate Transporter 2;1 (SULTR2;1) target. In addition, sulfate deprivation induces High Affinity Sulfate Transporters (HAST; SULTR1;2), improving sulfate uptake from low-sulfate soil solutions. Identification of new microRNAs and cloning of their target genes are necessary for a better understanding of the role of molecular regulation of plant resistance to Al stress and sulfate deprivation. © 2017, Springer-Verlag GmbH Germany.en_US
dc.formatPDFen_US
dc.identifier.urihttp://repositoriodigital.uct.cl/handle/10925/2237
dc.language.isoenen_US
dc.publisherElservier Science LTDen_US
dc.rightsObra bajo licencia Creative Commons 3.0en_US
dc.sourcePlantaen_US
oaire.resourceTypeArtículo de Revistaen_US
uct.carreraAgronomíaen_US
uct.catalogadorMLMen_US
uct.comunidadRecursos Naturalesen_US
uct.disciplinaAgronomíaen_US
uct.facultadFacultad de Recursos Naturalesen_US
uct.indizacionSCOPUSen_US
uct.nucleosNúcleo en Producción Alimentariaen_US
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Alarcón_Inostroza_Alberdi_Molecular_2018.pdf
Size:
524.51 KB
Format:
Adobe Portable Document Format
Description:
Artículo de revista
License bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
803 B
Format:
Item-specific license agreed upon to submission
Description: