On the spectrum of a rank two modification of a diagonal matrix for linearized fluxes modelling polydisperse sedimentation

datacite.alternateIdentifier.citationHYPERBOLIC PROBLEMS: THEORY, NUMERICS AND APPLICATIONS, PART 2,Vol.67,409-418,2009
datacite.creatorBerres, Stefan
datacite.creatorVoitovich, Tatiana
datacite.creatorTadmor, E
datacite.creatorLiu, J
datacite.creatorTzavaras, A
datacite.date2009
datacite.subject.englishRank two modification
datacite.subject.englishJacobian matrix
datacite.subject.englishconservation law
datacite.subject.englishpolydisperse suspension
datacite.subject.englishnon-genuinely nonlinear system
datacite.titleOn the spectrum of a rank two modification of a diagonal matrix for linearized fluxes modelling polydisperse sedimentation
dc.date.accessioned2021-04-30T16:25:24Z
dc.date.available2021-04-30T16:25:24Z
dc.description.abstractThe spectrum of a rank two modification of a diagonal matrix is calculated. The underlying matrix structure appears as the Jacobian matrix of a flux function of a first-order partial differential equation modelling dispersed solid-liquid flow. It is shown that, under physically reasonable conditions, there is a complete set of real roots of the characteristic polynomial. This contribution reexamines the analysis of (Basson, Berres and Burger, Appl. Math. Mod., 2008) by using the tools developed in (Donat and Mu let, Num. Meth. of PDE, 2009). The considered system belongs to a generic class of strictly hyperbolic, but non-genuinely nonlinear systems of conservation laws. For illustration, the solution of a benchmark initial-value problem is studied.
dc.identifier.urihttp://repositoriodigital.uct.cl/handle/10925/2511
dc.language.isoen
dc.publisherAMER MATHEMATICAL SOC
dc.sourceHYPERBOLIC PROBLEMS: THEORY, NUMERICS AND APPLICATIONS, PART 2
oaire.resourceTypeMeeting
uct.catalogadorWOS
uct.indizacionISTP
Files