Outlier Vehicle Trajectory Detection Using Deep Autoencoders in Santiago, Chile
Outlier Vehicle Trajectory Detection Using Deep Autoencoders in Santiago, Chile
Authors
Peralta, Billy
Soria, Richard
Nicolis, Orietta
Ruggeri, Fabrizio
Caro, Luis
Bronfman, Andres
Soria, Richard
Nicolis, Orietta
Ruggeri, Fabrizio
Caro, Luis
Bronfman, Andres
Profesor GuĆa
Authors
Date
Datos de publicaciĆ³n:
10.3390/s23031440
SENSORS,Vol.23,,2023
SENSORS,Vol.23,,2023
Tipo de recurso
Article
Keywords
Materia geogrƔfica
Collections
Abstract
In the last decade, a large amount of data from vehicle location sensors has been generated due to the massification of GPS systems to track them. This is because these sensors usually include multiple variables such as position, speed, angular position of the vehicle, etc., and, furthermore, they are also usually recorded in very short time intervals. On the other hand, routes are often generated so that they do not correspond to reality, due to artifacts such as buildings, bridges, or sensor failures and where, due to the large amount of data, visual analysis of human expert is unable to detect genuinely anomalous routes. The presence of such abnormalities can lead to faulty sensors being detected which may allow sensor replacement to reliably track the vehicle. However, given the reliability of the available sensors, there are very few examples of such anomalies, which can make it difficult to apply supervised learning techniques. In this work we propose the use of unsupervised deep neural network models based on stacked autoencoders to detect anomalous routes in vehicles within Santiago de Chile. The results show that the proposed model is capable of effectively detecting anomalous paths in real data considering validation given by an expert user, reaching a performance of 82.1% on average. As future work, we propose to incorporate the use of Long Short-Term Memory (LSTM) and attention-based networks in order to improve the detection of anomalous trajectories.