Barycentric Interpolation and Exact Integration Formulas for the Finite Volume Element Method

datacite.alternateIdentifier.citationNUMERICAL ANALYSIS AND APPLIED MATHEMATICS,Vol.1048,575-+,2008
datacite.creatorVoitovich, Tatiana
datacite.creatorVandewalle, Stefan
datacite.creatorSimos, TE
datacite.creatorPsihoyios, G
datacite.creatorTsitouras, C
datacite.date2008
datacite.subject.englishfinite volume element method
datacite.subject.englishbarycentric coordinates
datacite.subject.englishintegration formulas
datacite.titleBarycentric Interpolation and Exact Integration Formulas for the Finite Volume Element Method
dc.date.accessioned2021-04-30T16:35:22Z
dc.date.available2021-04-30T16:35:22Z
dc.description.abstractThis contribution concerns with the construction of a simple and effective technology for the problem of exact integration of interpolation polynomials arising while discretizing partial differential equations by the finite volume element method on simplicial meshes. It is based on the element-wise representation of the local shape functions through barycentric coordinates (barycentric interpolation) and the introducing of classes of integration formulas for the exact integration of generic monomials of barycentric coordinates over the geometrical shapes defined by a barycentric dual mesh. Numerical examples are presented that illustrate the validity of the technology.
dc.identifier.urihttp://repositoriodigital.uct.cl/handle/10925/3150
dc.language.isoen
dc.publisherAMER INST PHYSICS
dc.sourceNUMERICAL ANALYSIS AND APPLIED MATHEMATICS
oaire.resourceTypeMeeting
uct.catalogadorWOS
uct.indizacionISTP
Files