Barycentric Interpolation and Exact Integration Formulas for the Finite Volume Element Method
datacite.alternateIdentifier.citation | NUMERICAL ANALYSIS AND APPLIED MATHEMATICS,Vol.1048,575-+,2008 | |
datacite.creator | Voitovich, Tatiana | |
datacite.creator | Vandewalle, Stefan | |
datacite.creator | Simos, TE | |
datacite.creator | Psihoyios, G | |
datacite.creator | Tsitouras, C | |
datacite.date | 2008 | |
datacite.subject.english | finite volume element method | |
datacite.subject.english | barycentric coordinates | |
datacite.subject.english | integration formulas | |
datacite.title | Barycentric Interpolation and Exact Integration Formulas for the Finite Volume Element Method | |
dc.date.accessioned | 2021-04-30T16:35:22Z | |
dc.date.available | 2021-04-30T16:35:22Z | |
dc.description.abstract | This contribution concerns with the construction of a simple and effective technology for the problem of exact integration of interpolation polynomials arising while discretizing partial differential equations by the finite volume element method on simplicial meshes. It is based on the element-wise representation of the local shape functions through barycentric coordinates (barycentric interpolation) and the introducing of classes of integration formulas for the exact integration of generic monomials of barycentric coordinates over the geometrical shapes defined by a barycentric dual mesh. Numerical examples are presented that illustrate the validity of the technology. | |
dc.identifier.uri | http://repositoriodigital.uct.cl/handle/10925/3150 | |
dc.language.iso | en | |
dc.publisher | AMER INST PHYSICS | |
dc.source | NUMERICAL ANALYSIS AND APPLIED MATHEMATICS | |
oaire.resourceType | Meeting | |
uct.catalogador | WOS | |
uct.indizacion | ISTP |