Effect of milling time on bioactivity and structural properties of CuO-MgO-ZnO metal oxide nanocomposites

datacite.alternateIdentifier.citationInorganic Chemistry Communications, 174, 2025
datacite.alternateIdentifier.doi10.1016/j.inoche.2025.113945
datacite.alternateIdentifier.issn1387-7003
datacite.creatorVergara-Figueroa, Judith
datacite.creatorCerda-Leal, Fabiola Rossana
datacite.creatorValenzuela-Melgarejo, Francisco J.
datacite.creatorJara-Medina, Kevins
datacite.creatorPesenti, Héctor
datacite.creatorSalvo, C.
datacite.date2025
datacite.rightsRegistro bibliográfico
datacite.subjectAntibacterial Activity
datacite.subjectCytotoxicity
datacite.subjectMechanical Milling
datacite.subjectMetal Oxide Nanocomposites
datacite.subjectStructural Properties
datacite.titleEffect of milling time on bioactivity and structural properties of CuO-MgO-ZnO metal oxide nanocomposites
dc.contributor.authorPESENTI PEREZ, HECTOR GONZALO
dc.date.accessioned2025-10-06T14:21:55Z
dc.date.available2025-10-06T14:21:55Z
dc.description.abstractThis study investigates the effect of mechanical milling time on the structural properties and bioactivity of metal oxide powders composed of CuO, MgO, and ZnO. Nanocomposites (NPCs) were synthesized by milling at 0 h, 5 h, and 10 h to evaluate their potential in biomedical and food packaging applications. The samples were characterized using X-ray Diffraction (XRD), Scanning Electron Microscopy (SEM), Energy Dispersive X-ray Spectroscopy (EDS), and Fourier Transform Infrared Spectroscopy (FT-IR). XRD analysis revealed a reduction in crystallite size from 23.09 nm to 21.67 nm with increasing milling time. SEM-EDS analysis showed a homogeneous dispersion of elements in the 5 h sample. FT-IR confirmed the formation of new bonds between the metal oxides, suggesting changes in the material's structure. These structural modifications directly impact the material's bioactivity. Antibacterial activity tests demonstrated that NPCs exhibit greater efficacy against Staphylococcus aureus, with the 5 h sample being the most effective, achieving 46.7 % inhibition at 3 mg/mL. The 10 h sample showed similar efficacy (43.3 %). Gram-negative bacteria, such as Escherichia coli and Salmonella spp., exhibited minimal inhibition, likely due to the resistance mechanisms of their cell walls, which limit the effectiveness of antibacterial agents. The relationship between structural properties and bioactivity was clear, as the reduction in particle size and improved dispersion of elements enhanced antibacterial activity. Cytotoxicity tests showed that NPCs were non-toxic to erythrocytes, with cell viabilities above 75 %, meeting biocompatibility standards established by ISO 10993 5. Nanocomposites synthesized after 5 h of milling (NPC 5 h) proved to be the most effective in terms of biocompatibility, with the highest cell viability recorded at 97.40 % at a concentration of 0.75 mg/mL. Even at a concentration of 3.00 mg/mL, NPC 5 h maintained cell viability above 74.80 %, highlighting its potential as a biocompatible material. The optimal milling time of 5 h achieved a balance between antibacterial activity and biocompatibility, representing this study's novel contribution by identifying the appropriate milling time to enhance both antibacterial efficacy and biocompatibility. © 2025 Elsevier B.V., All rights reserved.
dc.description.ia_keywordmilling, time, antibacterial, structural, bioactivity, cell, biocompatibility
dc.identifier.urihttps://repositoriodigital.uct.cl/handle/10925/6861
dc.language.isoen
dc.publisherElsevier BV
dc.relationinstname: ANID
dc.relationreponame: Repositorio Digital RI2.0
dc.rights.driverinfo:eu-repo/semantics/openAccess
dc.sourceInorganic Chemistry Communications
dc.subject.ia_odsODS 7: Energía asequible y no contaminante
dc.subject.ia_oecd1nCiencias Naturales
dc.subject.ia_oecd2nCiencias Biológicas
dc.subject.ia_oecd3nBiología General
dc.type.driverinfo:eu-repo/semantics/article
dc.type.driverhttp://purl.org/coar/resource_type/c_2df8fbb1
dc.type.openaireinfo:eu-repo/semantics/publishedVersion
dspace.entity.typePublication
oaire.citationEdition2025
oaire.citationTitleInorganic Chemistry Communications
oaire.citationVolume174
oaire.fundingReferenceANID FONDECYT POSTDOCTORADO 3230817
oaire.licenseConditionCopyright © Elsevier B.V., 2025
oaire.resourceTypeArtículo
oaire.resourceType.enArticle
relation.isAuthorOfPublication06eb1649-f51e-4f5e-ade8-49a1aca6c98e
relation.isAuthorOfPublication.latestForDiscovery06eb1649-f51e-4f5e-ade8-49a1aca6c98e
uct.catalogadorjvu
uct.comunidadIngenieríaen_US
uct.departamentoDepartamento Procesos Industriales
uct.facultadFacultad de Ingeniería
uct.indizacionScience Citation Index Expanded - SCIE
uct.indizacionScopus
uct.indizacionChemical Abstracts Service (CAS)
uct.indizacionCurrent Contents
Files