Mathematical Modeling and Numerical Approximation of Heat Conduction in Three-Phase-Lag Solid
| datacite.alternateIdentifier.citation | Energies, 17 (11), 2024 | |
| datacite.alternateIdentifier.doi | 10.3390/en17112497 | |
| datacite.alternateIdentifier.issn | 1996-1073 | |
| datacite.creator | Coronel, Aníbal | |
| datacite.creator | Lozada, Esperanza | |
| datacite.creator | Berres, Stefan | |
| datacite.creator | Huancas, Fernando | |
| datacite.creator | Murúa, Nicolás | |
| datacite.date | 2024 | |
| datacite.rights | Acceso abierto | |
| datacite.subject | Finite Difference Method | |
| datacite.subject | Heat Conduction | |
| datacite.subject | Second-order Finite Difference Scheme | |
| datacite.subject | Unconditional Numerical Method | |
| datacite.subject | Finite Difference Method | |
| datacite.subject | Heat Conduction | |
| datacite.subject | Heat Flux | |
| datacite.subject | Finite Difference Scheme | |
| datacite.subject | Finite-difference Methods | |
| datacite.subject | Interfacial Conditions | |
| datacite.subject | Model Approximations | |
| datacite.subject | Numerical Approximations | |
| datacite.subject | Second Orders | |
| datacite.subject | Second-order Finite Difference Scheme | |
| datacite.subject | Three Phase | |
| datacite.subject | Three Phasis | |
| datacite.subject | Unconditional Numerical Method | |
| datacite.subject | Numerical Methods | |
| datacite.title | Mathematical Modeling and Numerical Approximation of Heat Conduction in Three-Phase-Lag Solid | |
| dc.description.abstract | In this article, we propose a mathematical model for one-dimensional heat conduction in a three-layered solid considering that an interfacial condition is present for the temperature and heat flux conditions between the layers. The numerical approach is developed by constructing a finite difference scheme to solve the initial boundary interface problem. The numerical scheme is designed by considering the accuracy of the model on the inner part of each layer, then extending to the interfaces and boundaries by incorporating the continuous interfacial conditions. The finite difference scheme is unconditionally stable, convergent, and easy to implement since it consists of the solution of two algebraic systems. We provide three numerical examples to confirm that our numerical approximation is consistent with the analytical solution and the physical phenomenon. © 2024 Elsevier B.V., All rights reserved. | |
| dc.description.ia_keyword | numerical, heat, three, scheme, mathematical, model, conduction | |
| dc.format | ||
| dc.identifier.uri | https://repositoriodigital.uct.cl/handle/10925/5985 | |
| dc.language.iso | en | |
| dc.publisher | Multidisciplinary Digital Publishing Institute (MDPI) | |
| dc.relation | instname: ANID | |
| dc.relation | reponame: Repositorio Digital RI2.0 | |
| dc.rights.driver | info:eu-repo/semantics/openAccess | |
| dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/3.0/cl/ | |
| dc.source | Energies | |
| dc.type.driver | info:eu-repo/semantics/article | |
| dc.type.driver | http://purl.org/coar/resource_type/c_2df8fbb1 | |
| dc.type.openaire | info:eu-repo/semantics/publishedVersion | |
| dspace.entity.type | Publication | |
| oaire.citationEdition | 2024 | |
| oaire.citationIssue | 11 | |
| oaire.citationTitle | Energies | |
| oaire.citationVolume | 17 | |
| oaire.fundingReference | Universidad del Bío-Bío INES I+D 22-14 | |
| oaire.fundingReference | ANID FONDECYT 1230560 (Regular) | |
| oaire.fundingReference | Universidad Tecnológica Metropolitana LPR23-03 | |
| oaire.licenseCondition | Obra bajo licencia Creative Commons Atribución 4.0 Internacional | |
| oaire.licenseCondition.uri | https://creativecommons.org/licenses/by/4.0/ | |
| oaire.resourceType | Artículo | |
| oaire.resourceType.en | Article | |
| uct.catalogador | jvu | |
| uct.comunidad | Ingeniería | en_US |
| uct.departamento | Departamento de Ciencias Matemáticas y Físicas | |
| uct.facultad | Facultad de Ingeniería | |
| uct.indizacion | Science Citation Index Expanded - SCIE | |
| uct.indizacion | SCOPUS | |
| uct.indizacion | WOS | |
| uct.indizacion | DOAJ |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- Coronel et al. - 2024 - Energies - Mathematical Modeling and Nume.pdf
- Size:
- 2.08 MB
- Format:
- Adobe Portable Document Format
- Description:
