Mathematical Modeling and Numerical Approximation of Heat Conduction in Three-Phase-Lag Solid

datacite.alternateIdentifier.citationEnergies, 17 (11), 2024
datacite.alternateIdentifier.doi10.3390/en17112497
datacite.alternateIdentifier.issn1996-1073
datacite.creatorCoronel, Aníbal
datacite.creatorLozada, Esperanza
datacite.creatorBerres, Stefan
datacite.creatorHuancas, Fernando
datacite.creatorMurúa, Nicolás
datacite.date2024
datacite.rightsAcceso abierto
datacite.subjectFinite Difference Method
datacite.subjectHeat Conduction
datacite.subjectSecond-order Finite Difference Scheme
datacite.subjectUnconditional Numerical Method
datacite.subjectFinite Difference Method
datacite.subjectHeat Conduction
datacite.subjectHeat Flux
datacite.subjectFinite Difference Scheme
datacite.subjectFinite-difference Methods
datacite.subjectInterfacial Conditions
datacite.subjectModel Approximations
datacite.subjectNumerical Approximations
datacite.subjectSecond Orders
datacite.subjectSecond-order Finite Difference Scheme
datacite.subjectThree Phase
datacite.subjectThree Phasis
datacite.subjectUnconditional Numerical Method
datacite.subjectNumerical Methods
datacite.titleMathematical Modeling and Numerical Approximation of Heat Conduction in Three-Phase-Lag Solid
dc.description.abstractIn this article, we propose a mathematical model for one-dimensional heat conduction in a three-layered solid considering that an interfacial condition is present for the temperature and heat flux conditions between the layers. The numerical approach is developed by constructing a finite difference scheme to solve the initial boundary interface problem. The numerical scheme is designed by considering the accuracy of the model on the inner part of each layer, then extending to the interfaces and boundaries by incorporating the continuous interfacial conditions. The finite difference scheme is unconditionally stable, convergent, and easy to implement since it consists of the solution of two algebraic systems. We provide three numerical examples to confirm that our numerical approximation is consistent with the analytical solution and the physical phenomenon. © 2024 Elsevier B.V., All rights reserved.
dc.description.ia_keywordnumerical, heat, three, scheme, mathematical, model, conduction
dc.formatPDF
dc.identifier.urihttps://repositoriodigital.uct.cl/handle/10925/5985
dc.language.isoen
dc.publisherMultidisciplinary Digital Publishing Institute (MDPI)
dc.relationinstname: ANID
dc.relationreponame: Repositorio Digital RI2.0
dc.rights.driverinfo:eu-repo/semantics/openAccess
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/cl/
dc.sourceEnergies
dc.type.driverinfo:eu-repo/semantics/article
dc.type.driverhttp://purl.org/coar/resource_type/c_2df8fbb1
dc.type.openaireinfo:eu-repo/semantics/publishedVersion
dspace.entity.typePublication
oaire.citationEdition2024
oaire.citationIssue11
oaire.citationTitleEnergies
oaire.citationVolume17
oaire.fundingReferenceUniversidad del Bío-Bío INES I+D 22-14
oaire.fundingReferenceANID FONDECYT 1230560 (Regular)
oaire.fundingReferenceUniversidad Tecnológica Metropolitana LPR23-03
oaire.licenseConditionObra bajo licencia Creative Commons Atribución 4.0 Internacional
oaire.licenseCondition.urihttps://creativecommons.org/licenses/by/4.0/
oaire.resourceTypeArtículo
oaire.resourceType.enArticle
uct.catalogadorjvu
uct.comunidadIngenieríaen_US
uct.departamentoDepartamento de Ciencias Matemáticas y Físicas
uct.facultadFacultad de Ingeniería
uct.indizacionScience Citation Index Expanded - SCIE
uct.indizacionSCOPUS
uct.indizacionWOS
uct.indizacionDOAJ
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Coronel et al. - 2024 - Energies - Mathematical Modeling and Nume.pdf
Size:
2.08 MB
Format:
Adobe Portable Document Format
Description: