GPU Accelerating Algorithms for Three-Layered Heat Conduction Simulations
| datacite.alternateIdentifier.citation | Mathematics, 12 (22), 2024 | |
| datacite.alternateIdentifier.doi | 10.3390/math12223503 | |
| datacite.alternateIdentifier.issn | 2227-7390 | |
| datacite.creator | Murúa, Nicolás | |
| datacite.creator | Coronel, Aníbal | |
| datacite.creator | Tello, Alex | |
| datacite.creator | Berres, Stefan | |
| datacite.creator | Huancas, Fernando | |
| datacite.date | 2024 | |
| datacite.rights | Acceso abierto | |
| datacite.subject | Computational Efficiency | |
| datacite.subject | Finite Difference Method | |
| datacite.subject | Gpu Acceleration | |
| datacite.subject | Heat Transfer | |
| datacite.subject | High-performance Computing | |
| datacite.subject | Parallel Processing | |
| datacite.subject | Sparse Linear Systems | |
| datacite.title | GPU Accelerating Algorithms for Three-Layered Heat Conduction Simulations | |
| dc.date.accessioned | 2025-10-06T14:22:01Z | |
| dc.date.available | 2025-10-06T14:22:01Z | |
| dc.description.abstract | In this paper, we consider the finite difference approximation for a one-dimensional mathematical model of heat conduction in a three-layered solid with interfacial conditions for temperature and heat flux between the layers. The finite difference scheme is unconditionally stable, convergent, and equivalent to the solution of two linear algebraic systems. We evaluate various methods for solving the involved linear systems by analyzing direct and iterative solvers, including GPU-accelerated approaches using CuPy and PyCUDA. We evaluate performance and scalability and contribute to advancing computational techniques for modeling complex physical processes accurately and efficiently. © 2024 Elsevier B.V., All rights reserved. | |
| dc.description.ia_keyword | heat, finite, difference, conduction, three, layered, linear | |
| dc.format | ||
| dc.identifier.uri | https://repositoriodigital.uct.cl/handle/10925/6905 | |
| dc.language.iso | en | |
| dc.publisher | Multidisciplinary Digital Publishing Institute (MDPI) | |
| dc.relation | instname: ANID | |
| dc.relation | reponame: Repositorio Digital RI2.0 | |
| dc.rights.driver | info:eu-repo/semantics/openAccess | |
| dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/3.0/cl/ | |
| dc.source | Mathematics | |
| dc.type.driver | info:eu-repo/semantics/article | |
| dc.type.driver | http://purl.org/coar/resource_type/c_2df8fbb1 | |
| dc.type.openaire | info:eu-repo/semantics/publishedVersion | |
| dspace.entity.type | Publication | |
| oaire.citationEdition | 2024 | |
| oaire.citationIssue | 22 | |
| oaire.citationTitle | Mathematics | |
| oaire.citationVolume | 12 | |
| oaire.fundingReference | Universidad del Bío-Bío | |
| oaire.fundingReference | ANID FONDECYT 1230560 (Regular) | |
| oaire.fundingReference | ANID FONDEF ID23I10026 | |
| oaire.fundingReference | Universidad de Antofagasta VRIIP | |
| oaire.fundingReference | Universidad Tecnológica Metropolitana LPR23-03 | |
| oaire.licenseCondition | Obra bajo licencia Creative Commons Atribución 4.0 Internacional | |
| oaire.licenseCondition.uri | https://creativecommons.org/licenses/by/4.0/ | |
| oaire.resourceType | Artículo | |
| oaire.resourceType.en | Article | |
| uct.catalogador | jvu | |
| uct.comunidad | Ingeniería | en_US |
| uct.departamento | Departamento de Ciencias Matemáticas y Físicas | |
| uct.facultad | Facultad de Ingeniería | |
| uct.indizacion | Science Citation Index Expanded - SCIE | |
| uct.indizacion | Scopus | |
| uct.indizacion | zbMATH | |
| uct.indizacion | MathSciNet | |
| uct.indizacion | DOAJ |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- Murúa et al. - 2024 - Mathematics - GPU Accelerating Algorithms fo.pdf
- Size:
- 689.38 KB
- Format:
- Adobe Portable Document Format
- Description:
