GPU Accelerating Algorithms for Three-Layered Heat Conduction Simulations

datacite.alternateIdentifier.citationMathematics, 12 (22), 2024
datacite.alternateIdentifier.doi10.3390/math12223503
datacite.alternateIdentifier.issn2227-7390
datacite.creatorMurúa, Nicolás
datacite.creatorCoronel, Aníbal
datacite.creatorTello, Alex
datacite.creatorBerres, Stefan
datacite.creatorHuancas, Fernando
datacite.date2024
datacite.rightsAcceso abierto
datacite.subjectComputational Efficiency
datacite.subjectFinite Difference Method
datacite.subjectGpu Acceleration
datacite.subjectHeat Transfer
datacite.subjectHigh-performance Computing
datacite.subjectParallel Processing
datacite.subjectSparse Linear Systems
datacite.titleGPU Accelerating Algorithms for Three-Layered Heat Conduction Simulations
dc.date.accessioned2025-10-06T14:22:01Z
dc.date.available2025-10-06T14:22:01Z
dc.description.abstractIn this paper, we consider the finite difference approximation for a one-dimensional mathematical model of heat conduction in a three-layered solid with interfacial conditions for temperature and heat flux between the layers. The finite difference scheme is unconditionally stable, convergent, and equivalent to the solution of two linear algebraic systems. We evaluate various methods for solving the involved linear systems by analyzing direct and iterative solvers, including GPU-accelerated approaches using CuPy and PyCUDA. We evaluate performance and scalability and contribute to advancing computational techniques for modeling complex physical processes accurately and efficiently. © 2024 Elsevier B.V., All rights reserved.
dc.description.ia_keywordheat, finite, difference, conduction, three, layered, linear
dc.formatPDF
dc.identifier.urihttps://repositoriodigital.uct.cl/handle/10925/6905
dc.language.isoen
dc.publisherMultidisciplinary Digital Publishing Institute (MDPI)
dc.relationinstname: ANID
dc.relationreponame: Repositorio Digital RI2.0
dc.rights.driverinfo:eu-repo/semantics/openAccess
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/cl/
dc.sourceMathematics
dc.type.driverinfo:eu-repo/semantics/article
dc.type.driverhttp://purl.org/coar/resource_type/c_2df8fbb1
dc.type.openaireinfo:eu-repo/semantics/publishedVersion
dspace.entity.typePublication
oaire.citationEdition2024
oaire.citationIssue22
oaire.citationTitleMathematics
oaire.citationVolume12
oaire.fundingReferenceUniversidad del Bío-Bío
oaire.fundingReferenceANID FONDECYT 1230560 (Regular)
oaire.fundingReferenceANID FONDEF ID23I10026
oaire.fundingReferenceUniversidad de Antofagasta VRIIP
oaire.fundingReferenceUniversidad Tecnológica Metropolitana LPR23-03
oaire.licenseConditionObra bajo licencia Creative Commons Atribución 4.0 Internacional
oaire.licenseCondition.urihttps://creativecommons.org/licenses/by/4.0/
oaire.resourceTypeArtículo
oaire.resourceType.enArticle
uct.catalogadorjvu
uct.comunidadIngenieríaen_US
uct.departamentoDepartamento de Ciencias Matemáticas y Físicas
uct.facultadFacultad de Ingeniería
uct.indizacionScience Citation Index Expanded - SCIE
uct.indizacionScopus
uct.indizacionzbMATH
uct.indizacionMathSciNet
uct.indizacionDOAJ
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Murúa et al. - 2024 - Mathematics - GPU Accelerating Algorithms fo.pdf
Size:
689.38 KB
Format:
Adobe Portable Document Format
Description: