Effect of particle size of nanoscale zero valent copper on inorganic phosphorus adsorption desorption in a volcanic ash soil

datacite.alternateIdentifier.citationChemosphere, 340, 2023
datacite.alternateIdentifier.doi10.1016/j.chemosphere.2023.139836
datacite.alternateIdentifier.issn0045-6535
datacite.creatorSuazo-Hernández, Jonathan
datacite.creatorUrdiales, Cristian
datacite.creatorPoblete-Grant, Patricia
datacite.creatorPesenti, Héctor
datacite.creatorCáceres-Jensen, Lizethly
datacite.creatorSarkar, Binoy
datacite.creatorBolan, Nanthi Sirangie
datacite.creatorMora Gil, Maria de la Luz
datacite.date2023
datacite.rightsAcceso abierto
datacite.subjectAdsorption Models
datacite.subjectAgricultural Soil
datacite.subjectEmerging Pollutants
datacite.subjectEngineered Nanoparticles
datacite.subjectInorganic Elements
datacite.subjectPhosphorus
datacite.subjectCopper
datacite.subjectCopper
datacite.subjectPhosphorus
datacite.subjectSoil
datacite.subjectAdsorption
datacite.subjectAdsorption Isotherms
datacite.subjectAgriculture
datacite.subjectCopper Oxides
datacite.subjectDesorption
datacite.subjectIron Oxides
datacite.subjectLigands
datacite.subjectNanoparticles
datacite.subjectParticle Size
datacite.subjectPhosphorus
datacite.subjectSoil Pollution
datacite.subjectVolcanoes
datacite.subjectAdsorption Modeling
datacite.subjectAgricultural Soils
datacite.subjectEmerging Pollutants
datacite.subjectEngineered Nanoparticles
datacite.subjectInorganic Elements
datacite.subjectInorganic Phosphorus
datacite.subjectParticles Sizes
datacite.subjectPhosphorus Adsorption
datacite.subjectSanta Barbara
datacite.subjectVolcanic Ash Soil
datacite.subjectSoils
datacite.subjectCopper Oxide Nanoparticle
datacite.subjectIron Nanoparticle
datacite.subjectPhosphorus
datacite.subjectTrace Element
datacite.subjectCopper
datacite.subjectAdsorption
datacite.subjectAgricultural Soil
datacite.subjectNanoparticle
datacite.subjectPollutant Source
datacite.subjectVolcanic Ash
datacite.subjectX-ray Diffraction
datacite.subjectAdsorption Kinetics
datacite.subjectAqueous Solution
datacite.subjectArticle
datacite.subjectChemisorption
datacite.subjectDesorption
datacite.subjectEnergy Dispersive X Ray Spectroscopy
datacite.subjectGreenhouse
datacite.subjectIsotherm
datacite.subjectMacronutrient
datacite.subjectNutrient Availability
datacite.subjectParticle Size
datacite.subjectPh
datacite.subjectPlant Growth
datacite.subjectPlant Nutrient
datacite.subjectPollutant
datacite.subjectPrecipitation
datacite.subjectSample
datacite.subjectScanning Electron Microscopy
datacite.subjectSoil
datacite.subjectStatic Electricity
datacite.subjectSurface Area
datacite.subjectX Ray Diffraction
datacite.subjectZeta Potential
datacite.subjectAnimal
datacite.subjectLepidoptera
datacite.subjectVolcano
datacite.subjectAnimals
datacite.subjectCopper
datacite.subjectParticle Size
datacite.subjectSoil
datacite.subjectVolcanic Eruptions
datacite.titleEffect of particle size of nanoscale zero valent copper on inorganic phosphorus adsorption desorption in a volcanic ash soil
dc.contributor.authorPESENTI PEREZ, HECTOR GONZALO
dc.date.accessioned2025-10-06T14:21:46Z
dc.date.available2025-10-06T14:21:46Z
dc.description.abstractZero valent copper engineered nanoparticles (Cu ENPs) released through unintentional or intentional actions into the agricultural soils can alter the availability of inorganic phosphorus (IP) to plants. In this study, we used adsorption desorption experiments to evaluate the effect of particle size of 1% Cu ENPs (25 nm and 40 60 nm) on IP availability in Santa Barbara (SB) volcanic ash soil. X Ray Diffraction results showed that Cu ENPs were formed by a mixture of Cu metallic and Cu oxides (Cu<inf>2</inf>O or/and CuO) species, while specific surface area values showed that Cu ENPs/25 nm could form larger aggregate particles compared to Cu ENPs/40 60 nm. The kinetic IP adsorption of SB soil without and with 1% Cu ENPs (25 nm and 40 60 nm) followed the mechanism described by the pseudo second order (k<inf>2</inf> = 0.45 1.13 x 10?3 kg mmol?1 min?1; r2 ? 0.999, and RSS ? 0.091) and Elovich (? = 14621.10 3136.20 mmol kg?1 min?1; r2 ? 0.984, and RSS ? 69) models. Thus, the rate limiting step for IP adsorption in the studied systems was chemisorption on a heterogeneous surface. Adsorption equilibrium isotherms without Cu ENPs were fitted well to the Freundlich model, while with 1% Cu ENPs (25 nm and 40 60 nm), isotherms were described best by the Freundlich and/or Langmuir model. The IP relative adsorption capacity (K<inf>F</inf>) was higher with 1% Cu ENPs/40 60 nm (K<inf>F</inf> = 110.41) than for 1% Cu ENPs/25 nm (K<inf>F</inf> = 74.40) and for SB soil (K<inf>F</inf> = 48.17). This study showed that plausible IP retention mechanisms in the presence of 1% Cu ENPs in SB soil were: i) ligand exchange, ii) electrostatic attraction, and iii) co precipitate formation. The desorption study demonstrated that 1% Cu ENPs/40 60 nm increased the affinity of IP in SB soil with a greater effect than 1% Cu ENPs/25 nm. Thus, both the studied size ranges of Cu ENPs could favor an accumulation of IP in volcanic ash soils. © 2023 Elsevier B.V., All rights reserved.
dc.description.ia_keywordenps, adsorption, soil, were, desorption, effect, size
dc.formatPDF
dc.identifier.issn1879-1298
dc.identifier.urihttps://repositoriodigital.uct.cl/handle/10925/6796
dc.language.isoen
dc.publisherElsevier BV
dc.relationinstname: ANID
dc.relationreponame: Repositorio Digital RI2.0
dc.rights.driverinfo:eu-repo/semantics/openAccess
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/cl/
dc.sourceChemosphere
dc.subject.ia_oecd1nCiencias Naturales
dc.subject.ia_oecd2nCiencias Biológicas
dc.subject.ia_oecd3nEcología
dc.type.driverinfo:eu-repo/semantics/article
dc.type.driverhttp://purl.org/coar/resource_type/c_2df8fbb1
dc.type.openaireinfo:eu-repo/semantics/publishedVersion
dspace.entity.typePublication
oaire.citationEdition2023
oaire.citationTitleChemosphere
oaire.citationVolume340
oaire.fundingReferenceANID FONDECYT 3230179, 3220201, 3210228, 1221634
oaire.fundingReferenceANID FONDEQUIP EQM160152
oaire.fundingReferenceUFRO BIOREN
oaire.fundingReferenceUFRO SOIL & PLANT LAB
oaire.fundingReferenceUCT LAB CRISTALOGRAFÍA
oaire.fundingReferenceUFRO VRIP
oaire.licenseConditionObra bajo licencia Creative Commons Atribución-No Comercial 4.0 Internacional
oaire.licenseCondition.urihttps://creativecommons.org/licenses/by-nc/4.0/
oaire.resourceTypeArtículo
oaire.resourceType.enArticle
relation.isAuthorOfPublication06eb1649-f51e-4f5e-ade8-49a1aca6c98e
relation.isAuthorOfPublication.latestForDiscovery06eb1649-f51e-4f5e-ade8-49a1aca6c98e
uct.catalogadorjvu
uct.comunidadIngenieríaen_US
uct.departamentoDepartamento Procesos Industriales
uct.facultadFacultad de Ingeniería
uct.indizacionScience Citation Index Expanded - SCIE
uct.indizacionScopus
uct.indizacionScimago
uct.indizacionPubMed
uct.indizacionEi Compendex
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Suazo-Hernández et al. - 2023 - Chemosphere - Effect of particle size of nan.pdf
Size:
2.2 MB
Format:
Adobe Portable Document Format
Description: