Numerical wave propagation study of the unusual response of Nevados de Chillán volcano to two aftershocks of the 2010 MW = 8.8 Maule earthquake

datacite.alternateIdentifier.citationJournal of Volcanology and Geothermal Research, 389, 2020
datacite.alternateIdentifier.doi10.1016/j.jvolgeores.2019.106735
datacite.alternateIdentifier.issn0377-0273
datacite.creatorFarías, Cristian
datacite.creatorGalván, Boris
datacite.date2020
datacite.rightsRegistro Bibliográfico
datacite.subjectFaulting
datacite.subjectInduced Seismicity
datacite.subjectNeodymium Compounds
datacite.subjectSeismic Waves
datacite.subjectVolcanoes
datacite.subjectWave Propagation
datacite.subjectChile Earthquakes
datacite.subjectDynamic Changes
datacite.subjectHydrothermal System
datacite.subjectLocal Structure
datacite.subjectNumerical Wave Propagation
datacite.subjectPhysical Changes
datacite.subjectStress Transfer
datacite.subjectVolumetric Response
datacite.subjectEarthquakes
datacite.subjectAftershock
datacite.subjectChile Earthquake 2010
datacite.subjectEarthquake Magnitude
datacite.subjectHydrothermal System
datacite.subjectSeismic Wave
datacite.subjectSeismicity
datacite.subjectVolcanology
datacite.subjectWave Propagation
datacite.subjectBio Bio
datacite.subjectChile
datacite.subjectMaule
datacite.subjectNevados De Chillan
datacite.titleNumerical wave propagation study of the unusual response of Nevados de Chillán volcano to two aftershocks of the 2010 MW = 8.8 Maule earthquake
dc.description.abstractIn 2012, two large aftershocks of the M<inf>W</inf> = 8.8 Maule, Chile earthquake occurred near the Central Chilean coast. Both events, with magnitudes M<inf>W</inf> = 6.1 and M<inf>W</inf> = 7.1 were located about 200 km away from the volcanic/hydrothermal Nevados de Chillán (NdC) complex. The system responded with a significant increase in seismicity to the M<inf>W</inf> = 6.1 event, and with a reduction in seismicity following the latter, larger M<inf>W</inf> = 7.1 earthquake. To understand the physical changes induced by both earthquakes at the NdC, we set up a numerical wave propagation study. Our results show that these observations likely result from dynamic changes at the NdC complex during the passage of the seismic waves. In the case of the M<inf>W</inf> = 6.1 aftershock, the extensive stress transfer was large enough to induce changes at the hydrothermal system, which could have later led to an increase in fluid-driven seismicity. In the case of the M<inf>W</inf> = 7.1 earthquake, the oblique arrival of seismic waves to the main fault of the NdC due to the M<inf>W</inf> = 7.1 earthquake induced slight compressions at the reservoir and created openings in the main fault, promoting fluid migration, which can explain the reduction in seismicity beneath the main craters of the volcano. Results also show that the geometry of an underlying fault system can influence the volumetric response, suggesting that the role of local structures in earthquake-volcano interactions influence the behavior of triggered systems and should therefore not be disregarded. © 2019 Elsevier B.V., All rights reserved.
dc.language.isoen
dc.publisherElsevier BV
dc.sourceJournal of Volcanology and Geothermal Research
dspace.entity.typePublication
oaire.citationEdition2020
oaire.citationTitleJournal of Volcanology and Geothermal Research
oaire.citationVolume389
oaire.fundingReferenceCONICYT Beca Chile
oaire.fundingReferenceFAZIT Stiftung (Alemania)
oaire.fundingReferenceUniversidad Católica de Temuco Proyecto Profondecyt
oaire.licenseConditionCopyright © Elsevier Ltd, 2019
oaire.resourceTypeArtículo
oaire.resourceType.enArticle
uct.catalogadorjvu
uct.comunidadIngenieríaen_US
uct.departamentoDepartamento de Obras Civiles y Geología
uct.facultadFacultad de Ingeniería
uct.indizacionScience Citation Index Expanded - SCIE
uct.indizacionScopus
uct.indizacionGeoRef
uct.indizacionCurrent Contents/Physical, Chemical and Earth Sciences
Files