Carbon nanotube production from algal biochar using microwave irradiation technology

datacite.alternateIdentifier.citationJournal of Analytical and Applied Pyrolysis, 172, 2023
datacite.alternateIdentifier.doi10.1016/j.jaap.2023.106017
datacite.alternateIdentifier.issn0165-2370
datacite.creatorHidalgo, Pamela
datacite.creatorNavia, Rodrigo
datacite.creatorHunter, Renato A.
datacite.creatorCamus, Carolina
datacite.creatorBuschmann, Alejandro H.
datacite.creatorEcheverría, Ana
datacite.date2023
datacite.rightsRegistro bibliográfico
datacite.subjectBiochar
datacite.subjectCarbon Nanotubes
datacite.subjectMacroalgae
datacite.subjectMicroalgae
datacite.subjectMicrowave Irradiation
datacite.subjectCarbon Nanotubes
datacite.subjectCatalysts
datacite.subjectElectric Conductivity
datacite.subjectEnergy Gap
datacite.subjectGraphite
datacite.subjectGraphitization
datacite.subjectHigh Resolution Transmission Electron Microscopy
datacite.subjectIron Compounds
datacite.subjectIrradiation
datacite.subjectMicrowave Irradiation
datacite.subjectOptical Properties
datacite.subjectOrganometallics
datacite.subjectBiochar
datacite.subjectCarbon Nanotube Growth
datacite.subjectElectrical Conductivity
datacite.subjectHydrodynamic Diameter
datacite.subjectMacro-algae
datacite.subjectMicro-algae
datacite.subjectMicroalga
datacite.subjectMicrowave- Irradiations
datacite.subjectMineral Ash
datacite.subjectScenedesmus
datacite.subjectMicroalgae
datacite.titleCarbon nanotube production from algal biochar using microwave irradiation technology
dc.contributor.authorHIDALGO OPORTO, PAMELA
dc.description.abstractIn this study, we evaluated the transformation of algal-based biochar into carbon nanotubes by irradiation in a microwave oven at low energies (100 300 W). Three species of algae (Macrocystis pyrifera, Sarcothalia crispata, and Scenedesmus almeriensis) were selected and pyrolyzed to obtain biochar for carbon nanotubes (CNTs) growth in the presence of ferrocene as the catalyst. The CNTs obtained were characterized by dynamic light scattering, UV VIS spectroscopy, Raman spectroscopy, transmission electron microscopy, X-ray diffraction, and electrical conductivity. The results indicate that algal biochar can be used for CNT growth. The heterogeneous structure of algal biochar can initiate the graphitization process for the formation of CNTs. The characteristics of synthesized CNTs vary with the biochar source used as a precursor. Thus, both the degree of graphitization of the wall and the content of nanotubes were higher using biochar with higher carbon content (from microalga Scenedesmus almeriensis); otherwise, the hydrodynamic diameter and electrical conductivity were higher using biochar with upper mineral ash content (from microalga Macrocystis pyrifera). Furthermore, it was found that a low catalyst concentration was required to promote growth due to the reactivity of the mineral ash of the biochar, and it was demonstrated that microwave heating conditions, such as microwave power and temperature, lead to variations in the optical properties of CNTs, such as the band gap energy, CNTs content, and measurement of the size such as the hydrodynamic diameter. © 2023 Elsevier B.V., All rights reserved.
dc.description.ia_keywordbiochar, cnts, algal, carbon, microwave, were, content
dc.identifier.urihttps://repositoriodigital.uct.cl/handle/10925/5711
dc.language.isoen
dc.publisherElsevier BV
dc.relationinstname: ANID
dc.relationreponame: Repositorio Digital RI2.0
dc.rights.driverinfo:eu-repo/semantics/openAccess
dc.sourceJournal of Analytical and Applied Pyrolysis
dc.subject.ia_odsODS 7: Energía asequible y no contaminante
dc.subject.ia_oecd1nCiencias Naturales
dc.subject.ia_oecd2nCiencias Biológicas
dc.subject.ia_oecd3nEcología
dc.type.driverinfo:eu-repo/semantics/article
dc.type.driverhttp://purl.org/coar/resource_type/c_2df8fbb1
dc.type.openaireinfo:eu-repo/semantics/publishedVersion
dspace.entity.typePublication
oaire.citationEdition2023
oaire.citationTitleJournal of Analytical and Applied Pyrolysis
oaire.citationVolume172
oaire.fundingReferenceCONICYT ANID FONDECYT 11221146 (Regular)
oaire.fundingReferenceCONICYT ANILLOS ACT172128 (GAMBIO)
oaire.fundingReferenceCONICYT FONDECYT 1190769 (Regular)
oaire.fundingReferenceCONICYT Basal FB-0001
oaire.licenseConditionCopyright © Elsevier B.V., 2023
oaire.resourceTypeArtículo
oaire.resourceType.enArticle
relation.isAuthorOfPublication497cc2ad-8dcc-4c54-9f75-6a2f685e99b4
relation.isAuthorOfPublication.latestForDiscovery497cc2ad-8dcc-4c54-9f75-6a2f685e99b4
uct.catalogadorjvu
uct.comunidadIngenieríaen_US
uct.departamentoDepartamento Procesos Industriales
uct.facultadFacultad de Ingeniería
uct.indizacionScience Citation Index Expanded - SCIE
uct.indizacionScopus
uct.indizacionEi Compendex
uct.indizacionChemical Abstracts Service (CAS)
uct.indizacionINSPEC
Files