A Characterization of Concave Mappings Using the Carathéodory Class and Schwarzian Derivative
| datacite.alternateIdentifier.citation | Computational Methods and Function Theory, 2024 | |
| datacite.alternateIdentifier.doi | 10.1007/s40315-024-00557-0 | |
| datacite.alternateIdentifier.issn | 1617-9447 | |
| datacite.creator | Bravo, Victor | |
| datacite.creator | Hernández, Rodrigo | |
| datacite.creator | Venegas, Osvaldo | |
| datacite.date | 2024 | |
| datacite.rights | Registro bibliográfico | |
| datacite.subject | 30c45 | |
| datacite.subject | 30c55 | |
| datacite.subject | 31a10 | |
| datacite.subject | Carathã©odory Class | |
| datacite.subject | Concave Mappings | |
| datacite.subject | Primary | |
| datacite.subject | Schwarzian Derivative | |
| datacite.subject | Secondary | |
| datacite.title | A Characterization of Concave Mappings Using the Carathéodory Class and Schwarzian Derivative | |
| dc.contributor.author | VENEGAS TORRES, OSVALDO | |
| dc.description.abstract | The purpose of this paper is to establish new characterizations of concave functions f defined in D in terms of the operator 1+zf??/f?, the Schwarzian derivative and the lower order. We will distinguish the cases when the omitted set is bounded or unbounded, and in the latter case, we will address the subclasses determined by the angle at infinity. © 2024 Elsevier B.V., All rights reserved. | |
| dc.description.ia_keyword | concave, schwarzian, derivative, will, purpose, establish, characterizations | |
| dc.identifier.uri | https://repositoriodigital.uct.cl/handle/10925/5926 | |
| dc.language.iso | en | |
| dc.publisher | Springer Nature | |
| dc.relation | instname: ANID | |
| dc.relation | reponame: Repositorio Digital RI2.0 | |
| dc.rights.driver | info:eu-repo/semantics/openAccess | |
| dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/3.0/cl/ | |
| dc.source | Computational Methods and Function Theory | |
| dc.type.driver | info:eu-repo/semantics/article | |
| dc.type.driver | http://purl.org/coar/resource_type/c_2df8fbb1 | |
| dc.type.openaire | info:eu-repo/semantics/publishedVersion | |
| dspace.entity.type | Publication | |
| oaire.citationEdition | 2024 | |
| oaire.citationTitle | Computational Methods and Function Theory | |
| oaire.fundingReference | ANID FONDECYT 1190756 (Regular) | |
| oaire.licenseCondition | Copyright © Springer-Verlag GmbH, 2024 | |
| oaire.resourceType | Artículo | |
| oaire.resourceType.en | Article | |
| relation.isAuthorOfPublication | f22c7aed-a907-4211-b78a-6fef24d7e4df | |
| relation.isAuthorOfPublication.latestForDiscovery | f22c7aed-a907-4211-b78a-6fef24d7e4df | |
| uct.catalogador | jvu | |
| uct.comunidad | Ingeniería | en_US |
| uct.departamento | Departamento de Ciencias Matemáticas y Físicas | |
| uct.facultad | Facultad de Ingeniería | |
| uct.indizacion | Science Citation Index Expanded - SCIE | |
| uct.indizacion | Scopus | |
| uct.indizacion | zbMATH | |
| uct.indizacion | Mathematical Reviews | |
| uct.indizacion | CNKI |
