BORIE BORIE, FERNANDO RICARDO
Email Address
Birth Date
Research Projects
Organizational Units
Job Title
Last Name
First Name
Name
Search Results
Early changes in the transition from conventional to no-tillage in a volcanic soil cultivated with beans (phaseolus vulgaris l.)
, BORIE BORIE, FERNANDO RICARDO, Montesdeoca Montesdeoca, Fabian, Avila Salem, Maria, Quishpe Ríos, Janeth, Borie Borie, Fernando, Cornejo Rivas, Pablo, Aguilera Ñonquepan, Paula, Alvarado Ochoa, Soraya, Espinosa, Jose
Conventional tillage (CT) is a soil management system commonly used by small farmers in the Ecuadorian highlands; they remove the soil during seedbed preparation to eliminate weeds, improve soil aeration, avoid compaction, and develop adequate rooting space. CT causes changes in physical, chemical, and biological soil properties but, in the long run, have negative effects on crop performance. Most of these effects can be avoided by using no-tillage (NT). The objective of this study was to determine the initial effects of NT, different fertilization rates and depth levels of sampling on yield and soil chemical and physical properties after the first crop cycle (prior to crop rotation scheme). A long-term field experiment was established to study the soil changes derived from the transition from CT to NT systems in a volcanic soil of the Ecuadorian highlands cultivated with the following crop rotation schemes: beans (Phaseolus vulgaris L.)-corn (Zea mays L.)-beans and beans-amaranth (Amaranthus caudatus L.)-beans. The results for the first crop cycle show that bean yield was 42% higher under NT compared to CT, indicating that the soil improvements promoted by NT had effects on crop yield; however, only the changes in pH and water storage capacity presented significant differences, levels of soil organic matter, total N, available P, and bulk density showed a trend towards improvements under NT. This suggests that NT allows for increased crop yield and improved crop rotation performance in the medium and long term.
Intercropping wheat with ancestral non-mycorrhizal crops in a volcanic soil at early growth stage
, BORIE BORIE, FERNANDO RICARDO, CASTILLO RUBIO, CLAUDIA GIOVANNA, Castillo, Claudia G.R., Solano, Jaime, Collinao, Mauricio, Catalán, Rocío, Campos, Pedro, Aguilera, Paula, Sieverding, Ewald, Borie, Fernando R.
Intercropping is especially relevant for low-income farmers when crop production is developed in soils under the new scenario produced by climatic change, mainly water shortage and low availability of nutrients especially P. An example of this would happen in volcanic soils of Southern Chile with high P fixing capacity and where most cereals are cropped. The aim of this study was to compare the benefits obtained on soil biochemical properties and on wheat (Triticum aestivum L.) growth when sowed under monoculture or intercropped with non-mycorrhizal plants such as quinoa (Chenopodium quinoa Willd.), buckwheat (Fagopyrum esculentum Moench), canola (Brassica napus L.) and white lupin (Lupinus albus L.) Wheat plants parameters such as shoot growth and morphological root traits together with some soil biological and chemical characteristics were measured after 30 and 44 d of plant growing in pots under controlled conditions. Results showed nonsignificant differences on growth parameters (i.e., height and shoot/root biomass) and P acquisition between monocrop and intercropped wheat. Conversely, wheat root morphological traits namely total length, root area, and forks were greatly reduced (around 50%) regardless of plant species. Intercropping tended to increase P availability and significantly reduced rhizosphere soil pH, with the lowest levels observed for wheat-canola combination (from 7.5 to 5.6). Intercropping produced a slight reduction in mycorrhizal colonization but increased over 100% viable spores number and exerted a variable effect on the microbial C-biomass, with greater values observed in wheat-canola combination (1.49 mg g-1). These results encourage us to deepen the use of some new plant combinations in family farming carried out in volcanic soils. © 2022 Elsevier B.V., All rights reserved.
Arquitectura radical y estados fenológicos de cultivos andinos quínoa, amaranto, lupino y alforfón en un Andisol del sur de Chile
2021, BORIE BORIE, FERNANDO RICARDO, Solano Solís, Jaime, González Villagra, Jorge, Collinao Calfumán, Mauricio, Borie Borie, Fernando, Castillo Rubio, Claudia
En Andisoles del sur de Chile, el rendimiento de los cultivos está principalmente limitado por fijación de fósforo (P) y fitotoxicidad por aluminio (Al3+), existieron escasos antecedentes sobre rotaciones con trigo que incluyan cultivos andinos. Resulta relevante el conocimiento de la arquitectura radical en estos cultivos con el fin de mejorar su productividad, al otorgar una mayor capacidad de absorción de agua, nutrientes y tolerancia a estreses bióticos y abióticos. El objetivo del trabajo fue evaluar la arquitectura radical en estadios tempranos de desarrollo de cultivos andinos establecidos en un Andisol del sur de Chile en condiciones de campo. Durante la temporada 2019/2020 se estableció un ensayo en campo utilizando cuatro cultivos: alforfón (Fagopyrum esculentum L.), amaranto (Amaranthus spp.), lupino (Lupinus albus L.) y quínoa (Chenopodium quinoa L.), todos no micorrizables, y como comparación se usó avena (Avena sativa L.), un cultivo micorrizable. En el periodo de crecimiento se realizaron cuatro muestreos de plantas y suelo registrando estadios fenológicos y evaluando arquitectura de raíces, pH del suelo y P disponible. En la primera mitad del ciclo vegetativo, el crecimiento de los cultivos fue continuo y se redujo drásticamente al final del ciclo de desarrollo, por la sequía imperante durante los meses de verano. Estas condiciones climáticas afectaron a quínoa y lupino, los cuales mostraron alta sensibilidad al estrés hídrico. En general, en todos los cultivos se observó una buena arquitectura radical, lo que sugiere una movilización de P en forma más eficiente. Mayor longitud radical se obtuvo en el alforfón, mientras que mejor capacidad de adaptación al medio se observó en quínoa. Se concluye que, mediante un adecuado manejo agronómico al incorporar quínoa o amaranto como precultivos en rotación con trigo, se podría incrementar la disponibilidad de P para el cultivo siguiente reduciendo la aplicación de fertilizantes químicos.
