It Is Hot in the Sun: Antarctic Mosses Have High Temperature Optima for Photosynthesis Despite Cold Climate

Thumbnail
Authors
Perera Castro, Alicia, V
Waterman, Melinda J.
Turnbull, Johanna D.
Ashcroft, Michael B.
McKinley, Ella
Watling, Jennifer R.
Bramley Alves, Jessica
Casanova Katny, Angelica
Zuniga, Gustavo
Flexas, Jaume
Robinson, Sharon A.
Authors
Date
Datos de publicaciĆ³n:
10.3389/fpls.2020.01178
Keywords
Abstract
The terrestrial flora of Antarctica's frozen continent is restricted to sparse ice-free areas and dominated by lichens and bryophytes. These plants frequently battle sub-zero temperatures, extreme winds and reduced water availability; all influencing their ability to survive and grow. Antarctic mosses, however, can have canopy temperatures well above air temperature. At midday, canopy temperatures can exceed 15 degrees C, depending on moss turf water content. In this study, the optimum temperature of photosynthesis was determined for six Antarctic moss species:Bryum pseudotriquetrum,Ceratodon purpureus,Chorisodontium aciphyllum,Polytrichastrum alpinum,Sanionia uncinata, andSchistidium antarcticicollected from King George Island (maritime Antarctica) and/or the Windmill Islands, East Antarctica. Both chlorophyll fluorescence and gas exchange showed maximum values of electron transport rate occurred at canopy temperatures higher than 20 degrees C. The optimum temperature for both net assimilation of CO(2)and photoprotective heat dissipation of three East Antarctic species was 20-30 degrees C and at temperatures below 10 degrees C, mesophyll conductance did not significantly differ from 0. Maximum mitochondrial respiration rates occurred at temperatures higher than 35 degrees C and were lower by around 80% at 5 degrees C. Despite the extreme cold conditions that Antarctic mosses face over winter, the photosynthetic apparatus appears optimised to warm temperatures. Our estimation of the total carbon balance suggests that survival in this cold environment may rely on a capacity to maximize photosynthesis for brief periods during summer and minimize respiratory carbon losses in cold conditions.
Description
Journal Volumes
Journals
Journal Issues
relationships.isJournalVolumeOf
relationships.isArticleOf
Journal Issue
Organizational Units
relationships.isArticleOf
Organizational Units
relationships.isPersonaOf
Organizational Units
relationships.isTesisOfOrg