Spatial relative risk and factors associated with porcine reproductive and respiratory syndrome outbreaks in United States breeding herds

Thumbnail
Authors
Sanhueza Frigolett, Juan
Stevenson, Mark A.
Vilalta, Carles
Kikuti, Mariana
Corzo, Cesar A.
Authors
Date
Datos de publicaciĆ³n:
10.1016/j.prevetmed.2020.105128
Keywords
Abstract
Details of incident cases of porcine reproductive and respiratory syndrome (PRRS) in United States breeding herds were obtained from the Morrison's Swine Health Monitoring Project. Herds were classified as cases if they reported an outbreak in a given season of the year and non-cases if they reported it in a season other than the case season or if they did not report a PRRS outbreak in any season. The geographic distribution of cases and non-cases was compared in each season of the year. The density of farms that had a PRRS outbreak during summer was higher in Southern Minnesota and Northwest-central Iowa compared to the density of the underlying population of non-case farms. This does not mean that PRRS outbreaks are more frequent during summer in absolute terms, but that there was a geographical clustering of herds breaking during summer in this area. Similar findings were observed in autumn. In addition, the density of farms reporting spring outbreaks was higher in the Southeast of the United States compared to that of the underlying population of non-case farms. A similar geographical clustering of PRRS outbreaks was observed during winter in the Southeast of the United States. Multivariable analyses, adjusting for the effect of known confounders, showed that the incidence rate of PRRS was significantly lower during winter and autumn during the porcine epidemic diarrhea (PED) epidemic years (2013-2014), compared to PRRS incidence rates observed during the winter and autumn of PED preepidemic years (2009-2012). After 2014, an increase in the incidence rate of PRRS was observed during winter and spring but not during autumn or summer. Pig dense areas were associated with a higher incidence rate throughout the year. However, this association tended to be stronger during the summer. Additionally, herds with >= 2500 sows had an increased incidence rate during all seasons except spring compared to those with <2500 sows. PRRS incidence was lower in year-round air-filtered herds compared to non-filtered herds throughout the year. We showed that not only the spatial risk of PRRS varies regionally according to the season of the year, but also that the effect of swine density, herd size and air filtering on PRRS incidence may also vary according to the season of the year. Further studies should investigate regional and seasonal drivers of disease. Breeding herds should maintain high biosecurity standards throughout the year.
Description
Journal Volumes
Journals
Journal Issues
relationships.isJournalVolumeOf
relationships.isArticleOf
Journal Issue
Organizational Units
relationships.isArticleOf
Organizational Units
relationships.isPersonaOf
Organizational Units
relationships.isTesisOfOrg