A fully adaptive numerical approximation for a two-dimensional epidemic model with nonlinear cross-diffusion

Thumbnail
Authors
Berres, Stefan
Ruiz-Baier, Ricardo
Authors
Date
Datos de publicaciĆ³n:
10.1016/j.nonrwa.2011.04.014
Keywords
Abstract
An epidemic model is formulated by a reaction-diffusion system where the spatial pattern formation is driven by cross-diffusion. The reaction terms describe the local dynamics of susceptible and infected species, whereas the diffusion terms account for the spatial distribution dynamics. For both self-diffusion and cross-diffusion, nonlinear constitutive assumptions are suggested. To simulate the pattern formation two finite volume formulations are proposed, which employ a conservative and a non-conservative discretization, respectively. An efficient simulation is obtained by a fully adaptive multiresolution strategy. Numerical examples illustrate the impact of the cross-diffusion on the pattern formation. (c) 2011 Elsevier Ltd. All rights reserved.
Description
Journal Volumes
Journals
Journal Issues
relationships.isJournalVolumeOf
relationships.isArticleOf
Journal Issue
Organizational Units
relationships.isArticleOf
Organizational Units
relationships.isPersonaOf
Organizational Units
relationships.isTesisOfOrg