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The pressure-driven growth model has been
employed to study a propagating foam front in
the foam-improved oil recovery process. A first-
order solution of the model proves the existence
of a concave corner on the front, which initially
migrates downwards at a well defined speed that
differs from the speed of front material points. At
later times, however, it remains unclear how the
concave corner moves and interacts with points on
the front either side of it, specifically whether material
points are extracted from the corner or consumed
by it. To address these questions, a second-order
solution is proposed, perturbing the aforementioned
first-order solution. However, the perturbation
is challenging to develop, owing to the nature
of the first-order solution, which is a similarity
solution that exhibits strong spatio-temporal non-
uniformities. The second-order solution indicates that
the corner’s vertical velocity component decreases as
the front migrates and that points initially extracted
from the front are subsequently consumed by it.
Overall, the perturbation approach developed herein
demonstrates how early-time similarity solutions
exhibiting strong spatio-temporal non-uniformities
break down as time proceeds.
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1. Introduction
Foam applications occur in several industrial processes, such as mining, food and cosmetics,
production of glass, foam fractionation, firefighting, as well in medicine, in a process known
as foam sclerotherapy [1–3]. Specifically, what is studied in the present work is an application
that involves foam flow through porous media, such as soil remediation and foam-improved
oil recovery (foam IOR) [4–6]. In those processes, the foam is used to sweep or remove a
specific material, be it a pollutant or a valuable component from the porous media [7–9]. In
petroleum engineering applications, during the oil recovery process, typically up to a third of
the oil originally present in the reservoir is recovered after the primary and secondary stages
of extraction [4]. Then, a set of techniques known as enhanced or improved oil recovery can
be employed to recover the additional remaining oil from the porous media [5]. In particular,
foam IOR is a tertiary oil extraction technique that consists of the injection of gas into the
reservoir (figure 1) after the deposit has been flooded with a surfactant solution [5]. Upon
contacting the surfactant, the gas generates foam, which propagates pushing the liquid (oil and
surfactant solution) to the extraction well (figure 1). The process relies on the foam films that are
formed being stable enough to survive as they propagate through the porous medium, displacing
reservoir liquids ahead of them. Stability of propagating foam films in the presence of oil can be
challenging, although surfactant formulations can be found that, for particular oil types, impart
good stability to the films [14–18].

(a) Foam in porous media
Modelling how foam propagates inside the reservoir is of great interest, since we cannot see what
is happening underground. Fortunately, there have been numerous studies of the mechanisms
by which foam is generated within and propagates within porous media [5,10,19–26], so insights
into the elements that are required within a model are available. In porous media, foam films can
severely restrict the motion of gas; the gas mobility falls due to the presence of foam films blocking
the flow paths of gas [22]. Further upstream where foam is drier, foam films undergo capillary
collapse. Upstream then, even though foam films might be present blocking certain pores, if
there are sufficient unblocked pores so that gas is able to find a flow path, then mobility is much
higher. Hence, what restricts motion is the zone of finely textured foam where injected gas meets
liquids already in the reservoir [27], not drier and coarser foam upstream or unfoamed reservoir
liquids downstream [12,22]. Therefore, we can track the front propagation by considering just the
region where foam is being generated. The thickness of this region, compared with other length
scales, i.e. the depth to which the foam penetrates, and the trajectory through which the front has
moved, is relatively small, such that it can be considered as a sharp propagation front (a curve
with negligible thickness) [10,27]. Hence, the front itself consists of the zone of finely textured
foam, separating (as mentioned above) coarsely textured, collapsed foam upstream from liquids
(surfactant solution and oil) downstream. Foam in porous media is of course a rheologically
complex fluid (which among other things) can exhibit shear thinning behaviour [19,22,25,28–30].
For the purposes to be considered here though, what matters is that at the front, we have a
finely textured foam, which has very low mobility. The total fluid mobility either side of the
front is substantially larger than that at the front itself, possibly by as much as four orders of
magnitude [12,29], so that it is possible to consider that all the pressure drop occurs across the
propagating front, where the entire dynamics is focused [27]. Consequently, the front is pushed
along the reservoir by pressure and at the same time is retarded by dissipation across the finely
textured foam zone, with the width of this zone gradually increasing with time (as follows from
fractional flow theory) but always remaining thin relative to front displacement [10]. As the front
motion is driven by the pressure difference across it, its velocity decreases with depth, since the
injection pressure behind remains fixed, but the hydrostatic pressure ahead increases with the
depth. Therefore, there is a maximum depth (used to non-dimensionalize length scales in the
system) to which the foam can penetrate, i.e. the depth at which the injected gas pressure equals
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Figure 1. Definition sketch: Foam front propagation across a vertical domain y ∈ [0, 1] and a horizontal domain x ∈ [0,∞).
Variables are non-dimensionalized as established in refs. [5,10,11]. Here,S is the distance along the front measured downward.
The foam is created by the injection of gas, forming a finely textured zone of small thickness at the propagating foam front. The
front is represented here by a solid curve, which is vertically divided into two regions, separated by a concave corner, and this
concave corner being thematchingpoint betweenanupper anda lower region. Furthermore, thepropagation front itself divides
the reservoir into two zones: the coarsely textured foam (to the left) and the liquid-filled zone (to the right). Both of these zones
havemuch highermobility than the propagation front [5,12,13]. Locally, each point on the frontmoves in the normaln direction,
which is at an angle α from the horizontal (each point following its own trajectory of length s). The trajectory that has been
followed by the points constituting the upper region is drawn with dotted lines, originating at the top boundary, those points
having been injected from the top and hence having been part of the front, during less time than the original ones (present from
t = 0, trajectories drawn with solid line) that constitute the lower region. At the top of the front (y = 1), the front position as
a function of time is

√
2t (in dimensionless variables) [10], which will be employed in this work as a top boundary condition.

the hydrostatic pressure [27]. This maximum depth scales proportionally to gas injection pressure
and inversely with liquid–gas density difference and gravitational acceleration. Far above this
maximum depth, however, the front is known to exhibit a concave corner or kink [27] (figure 1),
which starts off right at the top and migrates downward. Determining how this concave corner
moves is the issue addressed in this work.

(b) Concave corner and spatio-temporal non-uniformities
Physically, the concave corner or kink corresponds to an abrupt reorientation of the front
over a limited length scale. A locally non-smooth front shape, such as this concave corner
represents, may induce fingering phenomena, which decrease the process efficiency [10], thereby
highlighting the importance of identifying its position. Mathematically, the concave corner arises
due to an incompatibility when trying to match material points that have been on the propagation
front since the start of the injection process (all found in the so-called lower region below the
corner) and material points that have been newly injected from the top boundary since the initial
time (the so-called upper region) [27] (figure 2). The position of the kink/corner can be tracked
over time (see e.g. §4) in terms of ‘similarity variables’ at early times [27]. Early time here means
small compared with the characteristic time scale identified in ref. [10], which is used to make
the system dimensionless. This time scale turns out to be proportional to the following quantities:
gas saturation at the front, porosity of the medium, maximum penetration depth squared and
the (assumed roughly constant, based on fractional flow theory) ratio between front thickness
and front displacement, and inversely proportional to medium permeability, relative mobility
of foamed gas and pressure used to drive the foam. A typical value of this time scale has been
estimated as around 11–14 days [21,31]. However, the important point for the current work is
that this time scale is defined such that, at dimensionless time t = 1/2, the front is displaced
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Figure 2. Possible trajectories of material points in the neighbourhood of the kink or concave corner. (a) Points between the
fixed material point A and the kink move away from it, opening a gap between times t1 and t2. This gap is filled by points
extracted from the kink. Points between the fixed material point B and the kink are consumed between times t1 and t2. (b) An
alternative scenariowhere points between fixedmaterial pointsA and B, and the kink/corner, are consumed over a time interval
between t1 and t2.

horizontally by an amount equal to its maximum penetration depth [10]. Small time therefore
means the top of the front is displaced horizontally by much less than the depth over which the
front is displaced overall.

Using the similarity solution, a first-order approximation to the location of the concave
corner or kink was found [27]. However, as time proceeds, the first-order similarity solution
deviates from a numerical and therefore more exact solution [32]. This first-order solution
showed the corner moving downwards (at very early times) more slowly than the second-order
approximation to the material point initially at the top of the lower region, which meant that
new material points were being extracted from the kink or corner to populate the lower region
(figure 2a). Nevertheless, given that the second-order approximation to the point initially at the
top of the lower region indicates that material point’s vertical motion slows down over time,
eventually it is overtaken by the first-order approximation to the corner or kink: material points
in the lower region are now being consumed by the kink not extracted from it (figure 2b). In
this context, extracting material points implies physically that the zone of finely textured foam
would need to thin slightly (at least temporarily), whereas consuming/destroying such points
implies that this region must thicken a little (again at least temporarily). These are just temporary
effects, since away from the corner, a local balance between microscale foam generation and foam
destruction mechanisms quickly restores the thickness of the finely textured zone to its previous
value (i.e. front thickness proportional to front displacement as mentioned above) on time scales
much shorter than the total time for which the front propagates [30]. It is not clear, however,
whether this prediction of material points being extracted/consumed is the actual behaviour
or merely an artefact of having a second-order approximation for one quantity (the material
point) and a first-order approximation for the other (the corner). The aim of this article then is
to obtain the second-order approximation to the corner or kink location by improving upon the
first-order solution in the upper region. The question we address then is whether a transition
is still seen between the scenario of figure 2a and that of figure 2b when a consistent second-
order approximation is used. Obtaining a second-order solution in the upper region is however
challenging, more so than obtaining second-order solutions in the lower region was [27]. Indeed,
given that the first-order solution is a similarity solution, the generic mathematical challenge we
focus on here is exploring how that similarity solution breaks down at second order. Significant
spatio-temporal non-uniformities arise in the first-order similarity solution for the upper region,
which are already complicated to handle: a snapshot of the front shape at a fixed very early time
will have very sharp curvature, whereas a material point on the front released at a very early
time will have rapid temporal changes in its vertical velocity component [27]. Hence, we have to
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perturb the upper region about a solution that evolves over arbitrarily small spatial distances at
arbitrarily small times: this then is where the challenge lies.

There is also a question concerning for which set of times a second-order solution might be
valid given that in ref. [27], although the first-order solution was obtained formally for t � 1, it
managed to describe the front shape reasonably well even for values of t up to order unity, as was
determined by comparison with numerical results from an Eulerian model [32]. Hence, we expect
the second-order solution should also be valid over a similar time domain. In ref. [32], the shape
of a foam front in Eulerian coordinates was obtained numerically by solving a coupled system
of Hamilton–Jacobi equations [33], where the foam front was given implicitly, as the zero-level
set [34] of the solution variable. In the Eulerian method, it is not necessary to deal explicitly with
the aforementioned incompatibility between the positioning of newly injected material points
and material points already on the front, since material points are not tracked at all, by contrast
with what is required in a Lagrangian method. Nonetheless, a concave corner or kink still arises.
This kink was then tracked via an Eulerian scheme in ref. [32], and its position at early times
was found to be consistent with the Lagrangian estimates from ref. [27]. Nevertheless, numerical
artefacts may appear in the Eulerian solution since we can only ever capture the concave corner
to within the numerical grid resolution. This then motivates a return to a Lagrangian approach to
search for an improved analytical approximation, which will be free of such artefacts.

(c) Modelling the foam front
We can model the foam front advance through a homogeneous oil reservoir (figure 1) by using
a dimensionless form of the ‘pressure-driven growth model’, which has been widely studied
before [5,10,27,31,35]. The pressure-driven growth model relates the pressure difference across
the propagating front to motion, which is in the local normal direction n = ı̂ cos(α) − ĵ sin(α),
oriented at an angle α below the horizontal (figure 1). For the purpose of Lagrangian computation,
the propagation front can be discretized into a finite number of material points, the motion of
which we can readily track, and the front shape itself at any given time can be reconstructed
by following a collection of such points. The dimensionless form of the pressure-driven growth
model, developed in refs. [5,10,27,36], and used in this work, establishes that at any local front
position x = (x, y), the motion is governed by,

dx
dt

=
(y

s

)
n, (1.1)

where y ∈ [0, 1] represents the distance above the maximum depth (where y = 0 represents the
bottom and y = 1 the top of the solution domain), s is the distance travelled by a material point
and n is the local normal direction. The boundary condition establishes that at the top (y = 1),
front position x as a function of time corresponds to

√
2t in a dimensionless form [37], and at

this point, the front is completely perpendicular to the top (figure 1). A concave corner develops
and shifts over time [27] (figure 1). This corner is also called a ‘matching point’ since it is where
we must match two aforementioned regions that divide the front vertically: the ‘lower region’
incorporating material points originally on the front and the ‘upper region’ consisting of newly
injected points. The upper region starts off being of arbitrarily small extent, but grows over time
(the lower region shrinks to compensate). Likewise initially the front reorients by an arbitrarily
small angle in the upper region (albeit with arbitrarily large curvature), but the amount it reorients
grows over time (whereas curvature falls). Specifically, it was shown by [27] that the upper region
is of vertical extent relative to the maximum penetration depth of the front of order t (t here being
the dimensionless time), and it reorients through an angle of order

√
t, making curvature become

order 1/
√

t. As we have said, the concave corner arises as a consequence of an incompatibility
between points originally on the front and newly injected points. So, the concave corner itself
corresponds to the location on the front at which material points from either side meet. Both above
and below the corner, it is possible to capture analytically for small times t � 1, how material
points move. If we consider according to equation (1.1) that, closer to y = 1, the speed of the
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points is faster, the sign of the ĵ component of the normal n becomes negative (as in figure 1),
which implies that the points are moving downwards, following

dy
dt

= −
(y

s

)
sin(α), (1.2)

as well as moving in the x direction as

dx
dt

=
(y

s

)
cos(α), (1.3)

with α being the angle by which n is oriented below the horizontal. Combined together,
equations (1.2) and (1.3) give us the evolution of the trajectory path length as follows:

ds
dt

=
√(

dx
dt

)2
+
(

dy
dt

)2
= y

s
. (1.4)

By approximating these equations, it is possible to track analytically for small times, the
trajectory of the point that was originally at the top (y = 1 when t = 0). In particular for the vertical
coordinate, this can be done at first order (order t) and also at second order (order t2) (assuming
this point has not been consumed by the concave corner) [10,27]. Horizontally, this point lags

an order t3/2 distance behind the top of the front
(

which is always at location x = √
2 t
)

. The
trajectory of this material point, which was initially at y = 1, gives an indication where the concave
corner (or kink) may be, but not the exact location, since we are tracking a material point near the
concave corner not the corner itself. As already mentioned, what was studied in refs. [10,27] is
that the second-order correction causes the material point to move down more slowly than the
first-order approximation predicts. Extending this analysis to material points initially at y ≤ 1, a
solution is obtained for the lower region [27], to be discussed in §2. In the upper region, front
material points are tracked also, but this presents more of a challenge requiring, as mentioned
earlier, a similarity solution to be developed (see §3).

To summarize, this work expands upon the methodology used in ref. [27] to obtain a second-
order accurate solution to track the trajectory of the injected material points for t � 1, again,
in terms of similarity variables in the upper region, but with small perturbations breaking the
similarity. This proves challenging to do because of the strong spatio-temporal non-uniformities
associated with the similarity solution. The perturbed solution will be used to find the intersection
or matching point between the lower and the upper regions of the front (the concave corner or
kink), consistently through to the second order. The solution will then be interrogated in an effort
to establish which scenario (figure 2a or 2b) is realized as time progresses, noting that the scenario
of figure 2a is necessarily realized at arbitrarily small times.

The rest of this work is laid out as follows. In §§2–4, we review the existing methodology
derived by ref. [27], the extension to that methodology appearing from §5 onwards. The second-
order solution will be expressed, as before, in terms of similarity variables, but admitting small
perturbations at small times t � 1 that break the similarity (see §5). Then, in §§6 and 7, using
this new solution we will proceed to track the position of the concave corner with an accuracy
of second order in time t. Finally, in §8, we will use the second-order solution to compute the
shape of the upper region of the front in comparison with the previous solution given in ref. [27].
Conclusions are offered in §9.

2. Front propagation in the lower region
This section reviews the theory for the lower region presented in ref. [27]. The key result we
derive is equation (2.9), which describes the shape of the lower region. Readers familiar with the
derivations from ref. [27] may want to skip directly to §3.

To determine the front lower region shape, we solve equations (1.2)–(1.4) for t � 1. For small
times, the front is close to being a vertical line, the angle α being very small along it. So, we can
estimate cos(α) ≈ 1, via a leading order Taylor expansion. Moreover, we can also approximate the
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trajectory as s ≈ x. Hence, we can compute equation (1.3) as dx/dt ≈ y/x. Then, after integration,
we obtain that x ≈√

2yt, which is known as the Velde solution [10,27]. A higher order solution
known as the improved Velde solution was also given in ref. [27], establishing that

x ≈
√

2yt + t2

6
. (2.1)

This solution recognizes that historically points have been higher up (and hence faster moving)
than their current y location indicates. As a result, they have moved further than the Velde
solution indicates, i.e. the x location computed by equation (2.1) is bigger than x ≈√

2yt. Up
untill this point, we have the Velde solution of order t1/2 and the improved Velde solution
with a correction of order t3/2, given the x displacement of the lower region of the front. We
can also obtain an order t solution to compute the vertical location y of the points in the lower
region (corresponding to a first-order solution). This solution can be derived for small times
t � 1, starting from equation (1.2), with s ≈√

2yt and sin(α) ≈ α≈ tan(α) ≡ dx/dy ≈√
t/(2y), via

the Velde solution. As long as α is small, the curvature of the front dα/dS (with S being measured
down along the front as in figure 1) can then be approximated by |dα/dy| ≈ t1/2y−3/2/(2

√
2), so it

is likewise a small quantity when t � 1. Using (2.1) in place of the Velde solution only perturbs
this curvature slightly. This modest curvature in the lower region is a contrast from the order 1/

√
t

curvature that turns out to be present in the upper region. Here, we have adopted the notation
of [27], where d/dy denotes a derivative along a front composed of various material points at fixed
t, whereas d/dt denotes a time derivative following a specified material point. Then, integrating
equation (1.2), we determine

y ≈ y0 − t
2

, (2.2)

where y0 is the initial position of a material point originally anywhere below the top y0 ≤ 1.
Therefore, for the point initially at the top of the lower region (y0 = 1), we can compute

y1st,lower ≈ 1 − t/2, (2.3)

as its first-order approximated location over time. Considering that, at first order, all material
points in the lower region migrate downwards with a vertical velocity component of −1/2,
new material points must be injected to fill the gap between the y0 = 1 point and the top of the
reservoir. Hence, we can define a rescaled form for the vertical coordinate of the points as follows:

ζ = (1 − y)
(t/2)

, (2.4)

where ζ represents a ratio of distances between the top of the reservoir and any arbitrary point
y on the front, divided by the vertical distance through which the material point initially at the
top of the front has displaced. Here, at leading order, ζ takes values from ζ = 0 at the top of the
reservoir (y = 1), to ζ = 1 for the topmost original material point of the lower region, with ζ > 1
for points even lower down. However, a direct computation of the concave corner (or matching
point between the lower and upper regions) found that it actually occurs at ζ = ζcross < 1 (ζcross ≈
0.954, based on a complex integro-differential equation theory, changing to roughly ζcross ≈ 0.94
for a simpler but approximate differential equation approach), as shown in ref. [27]. The subscript
‘cross’ denotes the point at which upper and lower regions cross over one another, i.e. the corner
or matching point we seek. Since the material points originally at the top of the front are now
slightly lower down in y (slightly higher in ζ ) than the kink or concave corner is, new material
points have been extracted from the kink to fill the lower region (see e.g. figure 2a).

In addition, at any given y, we can define ξ as the horizontal displacement of the front, back
from the leading edge at the top of the front

√
2t, given by

ξ =
√

2t − x. (2.5)

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

11
 J

an
ua

ry
 2

02
4 



8

royalsocietypublishing.org/journal/rspa
Proc.R.Soc.A477:20200691

...........................................................

We can also express ξ geometrically as follows:

ξ =
∫ 1

y

(
dx
dy

)
dy =

∫ 1

y
tan(α) dy. (2.6)

We cannot yet use equation (2.6) to determine ξ exactly, since it extends all the way into the
upper region, for which α versus y is still unspecified. However, we can still use it to estimate
the order of magnitude of ξ under the assumption that α (albeit not curvature approximated here
by |dα/dy|) has a similar order of magnitude moving between the upper and lower regions. For
small times t � 1, since α ≈√

t/(2y) via the Velde solution (with α= atan(dx/dy) ≈ dx/dy), we
define Ξ as, the rescaled in time horizontal displacement [27], follows:

Ξ = ξ/t3/2, (2.7)

which recognizes that ξ is an order t3/2 quantity since we are integrating an order
√

t quantity
over an order t distance in the y direction close to y = 1 (see equation (2.4)). Furthermore, we can
express the lower region of the front, corresponding to ζ ≥ ζcross, in terms of ζ and Ξ , by first
substituting equation (2.1) into equation (2.5) to obtain

ξ = (2t − x2)

(
√

2t + x)
≈ (2t − 2yt − t2/6)(√

2t + x
) , (2.8)

and then specifically near the top of the domain where x ≈ √
2t, we can obtain after introducing

equations (2.4) and (2.7), that

Ξ ≈ (ζ − 1/6)

(2
√

2)
, if ζ ≥ ζcross, (2.9)

where ζ ≥ ζcross here requires

y ≤ ycross ≡ 1 −
(

t
2

)
ζcross, (2.10)

which implies that (2.9) is a solution describing specifically the lower region up to the matching
point or concave corner at location ycross as defined by equation (2.10). The utility of equation (2.9)
is that it gives a Ξ versus ζ relation for the lower region, and if we can also obtain a Ξ versus ζ
relation for the upper region, we can find where the two regions intersect and hence determine
ζcross. This is what ref. [27] achieved by expressing the upper region in terms of a similarity
equation (see §3 and also, in the electronic supplementary material, §S1 along with §S2). Note that
equation (2.9) is a leading order solution forΞ , accurate to order t3/2. Later on in §5, we introduce
equation (5.4), which corresponds to an order t5/2 accurate solution for the lower region, close
to the concave corner, improving upon equations (2.1) and (2.9) (see also details in the electronic
supplementary material, §S3).

Geometrically, equation (2.1) is a parabola, and equation (2.9) represents a tangent to that
parabola at y = 1 − t/2 or equivalently at ζ = 1, the geometrical distance between the parabola
and its tangent being negligible at the current order of approximation. Having this approximation
for the front lower region, it is possible to obtain a more accurate (second-order) estimate of the
trajectory y as a function of time t for material points in the lower region, as an improvement over
and above equation (2.2). As was proven in ref. [27], such points move obeying

y ≈ y0 − t/2 + 5 t2/(48 y0), (2.11)

where y0 ≤ 1 is the initial location of the points when t = 0. Equation (2.11) is a perturbation of
(2.2), indicating that when t � 1 all points move downwards with the same leading order velocity,
and moreover, velocity changes away from this leading order value only gradually with time. So,
assuming that the y0 = 1 point (the point originally at the top of the front) has not been consumed
yet by the concave corner, its location can still be tracked, and assuming it remains reasonably
close to the concave corner itself (to the extent that the aforementioned value of ζcross ≈ 0.94 is
relatively close to unity), we have an indication of where the junction between the upper and the
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lower region might be using equation (2.11). Indeed, we can compute the approximate vertical
location of the topmost original material point in the lower region as follows:

y2nd,lower ≈ 1 − t/2 + 5 t2/48 ≈ 1 − 0.5 t + 0.1042 t2. (2.12)

In summary, we have a first-order estimate of the kink location ycross, given by equation (2.10),
and a second-order estimate y2nd,lower (equation (2.11)) for a material point that improves upon
equation (2.3) and that we postulate is close to the kink location, although without a definitive
proof. The reason that the estimate y2nd,lower was so readily obtained is that the lower region is
comparatively uniform in space and time when t � 1, i.e. low curvatures of the front and weak
perturbations away from a leading order material point velocity. Our objective now is to obtain
a second-order correction to the equation for ycross. Before achieving that however we need to
switch over focus to the upper region. As we will see, analysing the upper region proves to be
challenging due to strong spatio-temporal non-uniformities that are present there.

3. First-order location of the upper region’s material points
In this section, we review the methodology employed in ref. [27] to determine the first-order
solution for the shape of the upper region of the front, in order to determine how it might match
with the lower region. The key results we derive are equations (3.3)–(3.5), which describe the
shape of the upper region of the front, parametrically, in terms of a parameter ψ , which represents
the fraction of time that an injected point has been on the front. We start by introducing similarity
equations in the upper region, and then based on these, we develop an order time t solution to
compute the vertical y movement of the points of the front’s upper region, along with an order
t3/2 expression for the x displacement. Readers familiar with the derivations from ref. [27] may
prefer to skip directly to §4. Higher order corrections are considered later on in §5.

(a) Introducing similarity variables
As ref. [27] showed, if at any given small instant in time (t � 1), the location and orientation of a
material element (treated as a set of closely spaced collinear material points) are identified relative
to the overall extent of the upper region and overall amount that the upper region reorients (both
of which happen to be arbitrarily small when t � 1), then it should be possible to collapse together
the front shapes in the upper region at different instants of time into a self-similar form. Hence,
we can express the front orientation angle α of the upper region as follows:

α =
√

t
2

A(ζ ), (3.1)

where A is a function of the variable ζ defined earlier [27] (see also §S1 in the electronic
supplementary material, which specifies the function implicitly as ζ = ζ (A)). If t is small here, α is
likewise small. On the other hand, using (2.4) and (3.1), curvature dα/dS, which is approximately
|dα/dy|, becomes (t/2)−1/2 dA/dζ and hence is large when t is small. Note also that

√
t/2 is, at

leading order, the amount that a material element reorients at the top of the lower region. This
leading order estimate is obtained via the Velde solution since we are looking at small times t � 1
close to y ≈ 1. Knowing the top of the lower region reorients to α ≈ √

t/2, if we compare this with
equation (3.1) for the upper region, any value of A(ζ ) greater than unity at the bottom of the upper
region thereby implies a concave kink. Moreover, the front meets the top perpendicularly, as the
boundary condition at y = 1 requires that the angle α= 0 there. This then implies that A varies
from 0 at the top, to some value Across at the cross-over or matching point, estimated to be at
ζ = ζcross. We know from ref. [27] that ζcross is slightly less than unity, so at leading order, the kink
or concave corner moves down slightly more slowly than material points originally at the top of
the lower region. Moreover ref. [27] showed that Across ≈ 1.18 roughly, which is slightly greater
than unity, so the upper region reorients more than the lower region does. As mentioned earlier,
that is what produces the kink or corner.
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(b) First-order upper region representation in terms ofψ
Since points originally on the front y0 ≤ 1 move downwards (as we demonstrated in §2), material
points must be injected from the top onto the front [10] to have a continuous solution over time.
For the upper region, we define tinj, as the time at which a material point has been injected. For
a fixed time t, we require that tinj ∈ (0, t]. As in ref. [27], we can define a coordinate ψ , such that
1 − ψ is the ratio between tinj and t, as follows:

ψ = 1 − tinj/t. (3.2)

We can express the front location (coordinates ζ and Ξ ) in terms of ψ instead of A (contrast
§S1 in the electronic supplementary material). Here, ψ can be varied by fixing t and varying tinj
(thereby looking at a collection of different material points) or alternatively by fixing tinj and
varying t (following the trajectory of an individual material point): both ways of varying ψ turn
out to be useful later on. If tinj is significantly smaller than t, the points injected tend to be already
close to the concave corner, implying that ψ →ψcross. Here, ψcross < 1 (via the integro-differential
theory, typically ψcross ≈ 0.948 [27]; or alternatively ψcross ≈ 0.9431 for the simpler differential
equation approach to be employed here, see §7.4.3 in ref. [27]), corresponds to the maximum
value of ψ , which is reached at the concave corner. Points with tinj smaller than (1 − ψcross)t have
already been consumed by the concave corner, so are no longer part of the propagating front
(figure 2). By contrast, if tinj → t, the material points are near to the top, which implies that ζ � 1,
A � 1,Ξ � 1 andψ � 1. To date, we have presented a first-order theory of the upper region as per
ref. [27]. The second-order theory to be presented from §5 onwards is most naturally expressed
in terms of the variable ψ defined by equation (3.2), rather than in terms of A as is presented in
§S1 in the electronic supplementary material. Before tackling the second-order theory, therefore
we need to recast the theory for the upper region in terms of ψ and then explain how to identify
the matching point between the lower and upper regions.

As mentioned previously, at small times t � 1, we can collapse together the front shapes at
different times, expressing the shape in terms of similarity variables A, ζ and Ξ , instead of α, y
and ξ . In particular, assuming that the upper region of the front consists of a set of material points,
each one injected at a different time tinj ∈ (0, t], we can compute the front shape for a fixed time t
in terms of ψ , varying it between 0 up to some ψcross. It follows from ref. [27] that

A ≈ A0 ≡ (1 − (1 − ψ)c)
c

, (3.3)

where 2c − 1 is the assumed invariant ratio between ds/dy and dx/dy, over the upper region [27]
(see §S1 in the electronic supplementary material). Substituting into equation (S1.2), we deduce

ζ ≈ ζ0 ≡ (1 − cψ − (1 − ψ)c)
(c(1 − c))

. (3.4)

Equations (3.3)–(3.4) have been expressed in the form A0(ψ) and ζ0(ψ) to highlight that they
are leading order expressions that may need to be corrected as time increases. It can be readily
checked that dζ/dA ≡ (dζ/dψ)/(dA/dψ), when computed at leading order via equations (3.3)–
(3.4), is compatible with equation (S1.1) (the original form given by [27]). We also obtain a
leading order expression for the rescaled horizontal displacement of the upper region Ξ =(

2
√

2
)−1 ∫ζ

0 A dζ in the form Ξ ≈Ξ0(ψ), by substituting from equations (3.3)–(3.4) to give

Ξ ≈Ξ0 ≡ 2c((1 − ψ)c − c − 1)ψ + (1 + c)(1 − ψ)2c − 2(2c + 1)(1 − ψ)c + 3c + 1

4
√

2c2(1 − c2)
. (3.5)

Taken together (3.4) and (3.5), both in terms of ψ , give a parametric representation of the upper
region of the front, with the same order of accuracy in time as the lower region as computed by
equation (2.9), i.e. order t3/2 in ξ and order t in y. Therefore, we can determine in terms of ψ ,
the matching point between the lower and the upper region of the front. This is how ref. [27]
proceeded to obtain ψcross, and the details will be discussed in the next section.
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t/tinj = 1/(1 – y)

(a) (b)

matching point
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Figure 3. (a) Matching point between the lower (dotted line) and the upper (solid line) region of the front. Here, −ζ is
the rescaled vertical y location of the front and−Ξ is the rescaled horizontal displacement of the front behind the leading
edge at the top. We decide to plot −Ξ versus −ζ since it has the same orientation as x versus y. We obtain that the
matching point occurs at ψcross ≈ 0.9431. Here, ζcross ≈ 0.9397 and Ξcross ≈ 0.2733. (b) Rescaled −ζ+(ψ ) location (see
the electronic supplementary material, §S2 for additional details) versus a rescaled time defined as t/tinj = 1/(1 − ψ ) with
0≤ψ ≤ψcross ≈ 0.9431. The solid curve represents the trajectory−ζ+ of amaterial pointmoving through the upper region
as−ζ (ψ )/(1 − ψ ), withζ (ψ )≡ ζ0(ψ ) at leading order as given by equation (3.4). Note this is not a straight line, implying
non-uniform motion. The dotted line shows the−ζ+ position of the concave corner itself, namely,−ζcross/(1 − ψ ), with
ζcross ≈ 0.9397. The solid curve and the dotted line coincide only whenψ =ψcross ≈ 0.9431. The dash-dotted line shows the
trajectory in terms of−ζ+ of a point in the lower region that was originally at the top of the front, as−1/(1 − ψ ).

4. First-order matching point between upper and lower regions
Now we review the methodology used in ref. [27] to determine the first-order vertical location of
the concave corner over time. Reviewing this enables us subsequently to extend that methodology
to second order in §5. The key first-order results are shown in figure 3. A snapshot of the shape
of the front is plotted in figure 3a, and in figure 3b, the trajectory of the concave corner at leading
order is plotted, in comparison with the first-order approximated trajectory of material points in
the upper and lower regions. Having consulted figures 3a–b, some readers may prefer to skip to
§5, in which the methodology is extended to higher order solutions.

Our immediate objective via figure 3 is to obtain the first-order matching point between the
lower and upper regions of the front (namely, the concave corner). We proceed by plotting both
regions, using equation (2.9) for the lower region and equations (3.4)–(3.5) for the upper region,
identifying the intersection or matching point (see figure 3a). Assuming c = 3/4 (the value given
by [27], see the electronic supplementary material §S1 for details), the matching point between
these two regions turns out to be ζcross ≈ 0.9397 and Ξcross ≈ 0.2733 and is obtained at ψcross ≈
0.9431 (figure 3a). This same result was previously obtained in ref. [27] albeit expressed not in
terms of ψ but rather in terms of A (equations (S1.2)–(S1.3)), with the corner found at Across ≈ 1.18
roughly. Given the value of ζcross, we can compute via equation (2.10)

y1st,cross = 1 − 0.4698 t, (4.1)

as the first-order vertical location of the concave corner (the cross-over or matching point between
the upper and the lower region of the front). Here, we employ the notation y1st,cross (instead
of simply ycross used earlier) to emphasize that this is a first-order solution. In the rest of the
section, we explore some consequences and concepts that follow from having found the first-order
matching point. These will be generalized to second order in later sections of the paper.

Further details can be found in the electronic supplementary material, §S2, which based
on the value of ψcross defines tinj(min)(t) (the earliest injected point still surviving on the front
at time t) and tmax(tinj) (the maximum time out to which a point injected at tinj survives).
Electronic supplementary material §S2, also presents another rescaling of the y coordinate ζ+ =
(1 − y)/(tinj/2) = ζ/(1 − ψ), which is relevant to figure 3b. While the variable ζ is useful for
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representing the shape of the front at fixed t, the variable ζ+ is more useful for representing the
trajectory of a material point with fixed tinj. Indeed, for a fixed tinj (and hence fixed material
point), plotting ζ+ versus 1/(1 − ψ) (with 1/(1 − ψ) = t/tinj via equation (3.2)) is just a rescaling of
y versus t. The fact that this is not a straight line in figure 3b indicates that, in the upper region,
material point motion always varies with time even in the limit of very small tinj and hence very
small t: this is one of the challenges of tracking material points in the upper region.

5. Second-order correction to front shape
To date, all we have done is review the first-order findings of [27], recast in terms of a more
convenient variable set. Now we extend those findings to obtain a second-order accurate solution
in time to compute the upper and lower regions of the front. Key results we obtain are
equations (5.5)–(5.7), from which we can track upper region material points on the front, and
equation (5.8), for which we can compute the corresponding location of points in the lower region.
Some details are relegated to the electronic supplementary material §§S3 and S4.

(a) Second-order location of the upper region’s material points
Although we parameterize the system in terms of ψ here, if we recall that ζ and Ξ could also be
expressed readily in terms of A (see equations (S1.2) and (S1.3), respectively), it is useful to begin
by computing a second-order expression for the front orientation angle A, for a small but finite
time t (see the electronic supplementary material §S4a for details of how this is achieved). It is
reasonable to expand A as follows:

A(ψ , t) ≈ A0(ψ) + t A1(ψ), (5.1)

to determine the effect of an order t correction upon the rescaled front orientation angle A
(which corresponds to an order t3/2 correction for α, see equation (3.1)). Equation (5.1) breaks
the similarity solution depending as it does on both ψ and t, not merely on ψ . Consistently,
we can expand the rescaled vertical (see the electronic supplementary material §S4b for details)
and horizontal (see the electronic supplementary material §S4c for details) locations of the upper
region’s material points, respectively, in the form of

ζ (ψ , t) ≈ ζ0(ψ) + t ζ1(ψ) (5.2)

and

Ξ (ψ , t) ≈Ξ0(ψ) + tΞ1(ψ). (5.3)

Here, A0, ζ0 and Ξ0 from §3, and A1, ζ1 and Ξ1 computed in the electronic supplementary
material §S5, turn out to be well-defined quantities in terms of ψ . In addition, since ζ is related to
y via equation (2.4) and Ξ is related to ξ via equation (2.7), and hence to x via equation (2.5),
it follows that equations (5.2) and (5.3) are order t2 and t5/2 accurate expressions in y and x,
respectively. To use these expressions to find the matching point between both regions of the
front, we must also calculate, with a consistent order of accuracy, the shape of the lower region.

(b) Second-order correction to lower region front shape
We now present an extension of the equation (2.9), used to compute the lower region of the front.
Note that the equation (2.9) has been derived via an order t3/2 accurate solution in the x direction
(given by equation (2.1); also known as the improved Velde solution) and an order t accurate
solution in the y direction (given by equation (2.2)). We need, however, to incorporate the order
t2 effect, in the vertical, which is given by equation (2.11), along with an order t5/2 correction to
compute the x location of material points, to achieve the same order of accuracy as is computed
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for the upper region via equations (5.2) and (5.3). The required expression is (see the electronic
supplementary material §S3)

Ξ ≈ 1

2
√

2

(
ζ − 1

6
+ t

8

(
ζ 2 − ζ

3
+ 107

540

))
, if ζ ≥ ζcross, (5.4)

which represents a parabola, as it includes a second-order term in ζ . This is applicable specifically
near the top of the lower region (ζ ≥ ζcross but not ζ � 1). Here, we see how a self-similar solution
(given by equation (2.9) involving only Ξ and ζ ), valid for early times, is broken at a small but
finite time. According to equation (5.4), for any specified ζ , the order t correction term for Ξ is
positive, so on a graph such as figure 3a, which plots coordinates (−ζ , −Ξ ), we obtain a point to
the left of the t → 0 limit (dotted line in figure 3a).

(c) Rescaled location of the upper region’s material points
The form of equations (5.1), (5.2), (5.3) (upper region) and (5.4) (lower region) indicates that in
the limit t → 0, the upper region can be expressed in similarity form via variables ζ and Ξ , in
which for the upper region in particular, only the ratio tinj/t ≡ 1 − ψ was relevant. Nevertheless,
for small but finite t, the similarity solution is broken as alluded to earlier, and both values tinj and
t are needed. To explore how the similarity solution becomes broken, we can either select a given
t and find the front shape ζ versus Ξ at that time, or alternatively we can select a given tinj and
find how a material point injected at time tinj moves and reorients. This latter approach is easier
since the governing equations for pressure-driven growth are expressed in the Lagrangian form.
A rescaling of the variables is now convenient. We define ζ+ and Ξ+, as the rescaled 1 − y and√

2t − x front location, rescaling respectively, by amounts depending solely on the now fixed tinj

(respectively by tinj/2 and t3/2
inj ), and we track a material point trajectory parametrically by varying

ψ from 0 up to ψcross (the matching point between the lower and upper region). Consistently,
we define A+ as the rescaled front orientation angle α (rescaled by

√
tinj/2). Using definitions

analogous to equations (2.4), (2.7) and (3.1), but with tinj in place of t, and relating A+, ζ+ and Ξ+
back to A, ζ and Ξ , we compute via equations (5.1)–(5.3)

A+ ≈ A0(ψ)√
1 − ψ

+ t
A1(ψ)√
1 − ψ

≡ A+,0(ψ) + tinj
A1(ψ)

(1 − ψ)3/2 = A+,0(ψ) + tinj A+,1(ψ), (5.5)

ζ+ ≈ ζ0(ψ)
1 − ψ

+ t
ζ1(ψ)
1 − ψ

≡ ζ+,0(ψ) + tinj
ζ1(ψ)

(1 − ψ)2 = ζ+,0(ψ) + tinj ζ+,1(ψ), (5.6)

and Ξ+ ≈ Ξ0(ψ)
(1 − ψ)3/2 + t

Ξ1(ψ)
(1 − ψ)3/2 ≡Ξ+,0(ψ) + tinj

Ξ1(ψ)
(1 − ψ)5/2 =Ξ+,0(ψ) + tinjΞ+,1(ψ), (5.7)

where t has been replaced by tinj/(1 − ψ) (as follows from equation (3.2)). Hence, if we can
determine how the front shape is perturbed at any given t � 1 (given by equations (5.1)–(5.3)),
we can also determine how the trajectory of a material point is perturbed at any given tinj, i.e, for
different choices of tinj � 1, we have different solutions ofΞ+ and ζ+ versus ψ , which correspond
to the actual geometric path that a fixed injected material point takes (at least to second-order
accuracy) to reach the concave corner (the intersection with the lower region).

(d) Rescaled location of the lower region’s material points
To find where material points injected in the upper region from time tinj intersect the lower region,
we convert (5.4) (applicable near the top of the lower region) into Ξ+ ≡Ξ/(1 − ψ)3/2 versus ζ+ ≡
ζ/(1 − ψ) format. At any given time t = tinj/(1 − ψ), it follows via equation (5.4)

Ξ+ ≈ (1 − ψ)−3/2

2
√

2

(
ζ+(1 − ψ) − 1

6
+ tinj

8

(
ζ 2
+(1 − ψ) − ζ+

3
+ 107

540(1 − ψ)

))
, (5.8)

where given any tinj, our challenge is to find aψ value (and hence a time t) at which equations (5.6)
and (5.7) intersect equation (5.8). Therefore, equations (5.6) and (5.7) give a locus ζ+ and Ξ+
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swept out by a material point in the upper region, and equation (5.8) gives the Ξ+ that would
be in the lower region at that same ζ+. The upper and lower regions only meet when, at the
same ζ+, they also have the same Ξ+. This then gives the matching or cross-over ζ+cross and
Ξ+cross point: for additional details, see §S6 in the electronic supplementary material. Despite the
similarity between equations (5.4) and (5.8), note the subtle difference in the way we use them.
With equation (5.4), it is convenient to fix t and consider how Ξ varies with ζ at that fixed t.
With equation (5.8), however, we vary t (by varying ψ at given tinj) and select a particular ζ+
(depending on ψ and hence on t), considering how Ξ+ then varies. Therefore, tracking different
tinj gives different cross-over points ζ+cross and Ξ+cross, which can be expressed in a form giving
the ζcross and Ξcross location of the concave corner over time t: see §6 and also the electronic
supplementary material §S7 for details. After using equation (5.8) in the way described earlier to
locate the matching point, there turns out to be an alternative way in which this equation can be
used. Given theψ and ζ+ values at the matching point, respectivelyψcross and ζ+cross, it is possible
to find, for any given tinj, corresponding values of t and y at the matching point. For these specific
t and y values, equation (2.11) can then be used to identify a y0 value (i.e. a material point in the
lower region, labelled by its initial location on the front), which coincides at the concave corner
with the given upper region material point labelled by tinj. It turns out (see §S8 in the electronic
supplementary material) that the required y0 only differs from unity by order tinj amounts, so it
is more useful to define a quantity z0 = 1 − y0 and hence a quantity Z0

Z0 ≡ (1 − y0)
(tinj/2)

= z0

(tinj/2)
. (5.9)

Once y0 or equivalently Z0 is known for any given tinj, then at all times t up the matching
point, equation (2.11) can now be rescaled into ζ+ versus ψ coordinates (see §S8 in the electronic
supplementary material for details), giving the trajectory followed by the lower region material
point, generally having (at any given time t or equivalently at any given ψ) a ζ+ different from
the upper region material point (except at the matching point). Substituting the lower region ζ+
into equation (5.8) and varying ψ gives the trajectory followed over time by this material point in
terms of ζ+ versus Ξ+, which can be compared with the trajectory for the upper region material
point described by equations (5.6)–(5.7). Trajectories of both points can be followed over time, and
at the matching point they coincide. Before equation (5.8) can be used in this particular fashion
however, first the matching point itself must be found.

6. Perturbed location of the concave corner
In this section, we present the perturbation analysis to track the location of the concave corner
with second-order accuracy in time. The key result is equation (6.7), giving the vertical location
of the concave corner over time. This is what we contrast, in §7, with the first-order solution for
the corner given by equation (4.1). The analysis proceeds as follows. Given a set of small but
finite tinj values here, we can obtain different ψcross values, with which we can determine the
variation in location of the concave corner over time. In the limit when tinj → 0, the value we seek
is the aforementioned ψcross ≈ 0.9431 (which we now denote ψcross,0). More generally, however,
varying tinj will cause ψcross (obtained as per the procedure discussed in §5d) to vary also. In the
limit of sufficiently small tinj, we can approximate this variation via

ψcross ≈ψcross,0 + tinjψcross,1 ≈ψcross,0 + (1 − ψcross,0)ψcross,1 t. (6.1)

Here, as mentioned earlier, ψcross,0 is the lowest order approximation found previously, and
ψcross,1 is a next order correction to be determined. Knowing ψcross, we can also define additional
quantities tmax and tinj(min) (mentioned in §4 and defined in the electronic supplementary material
§S2). Substituting (6.1) into equation (S2.2) and Taylor expanding, we deduce that the maximum
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time t = tmax for which a material point injected at tinj could survive would be

tmax ≡ tinj

(1 − ψcross)
≈ tinj

1 − ψcross,0
+

t2
injψcross,1

(1 − ψcross,0)2 . (6.2)

Moreover, at the cross-over point, the earliest injected material point still surviving at time t
has tinj = tinj(min) with, according to equations (6.1) and (S2.1)

tinj(min) ≡ (1 − ψcross)t ≈ (1 − ψcross,0) t − (1 − ψcross,0)ψcross,1 t2. (6.3)

Although the discussion of §§5c–d focused on functions used for tracking the loci of material
points, i.e. fixed tinj, having the value of tinj(min) can also be useful. Knowing tinj(min) makes it
possible to reconstruct the shape of the upper region (fixed t) by selecting a set of injected points
tinj in the domain tinj(min) ≤ tinj ≤ t. Then, computing ψ = 1 − tinj/t for each one and computing
Ξ and ζ (given by equations (5.3) and (5.2), respectively) for each ψ at the given time t, we can
reconstruct the front shape. Thus, we can convert between material point trajectories and front
shapes. This will be explored further in §8.

Once we know the values of ψcross,0 and ψcross,1, we can determine the perturbed value of A+
at the concave corner (denoted A+cross) by using equation (5.5) as follows:

A+cross ≈ A+,0(ψcross,0 + tinjψcross,1) + tinj A+,1(ψcross,0 + tinjψcross,1), (6.4)

which upon expanding for sufficiently small tinj gives

A+cross ≈ A+,0(ψcross,0) + tinj

(
ψcross,1A′

+,0(ψcross,0) + A+,1(ψcross,0)
)

≡ A+cross,0 + tinjA+cross,1, (6.5)

where A′
+,0 denotes the function dA+,0/dψ (which is obtained via equations (3.3) and (5.5)). There

are analogous expressions for ζ+ and Ξ+ at the concave corner (denoted ζ+cross and Ξ+cross):
the formulae are given in equations (S7.1)–(S7.3) in the electronic supplementary material §S7.
There are also analogous expressions, but expanded in terms of t rather than in terms of tinj.
These provide the cross-over values of A, ζ and Ξ , denoted Across, ζcross and Ξcross: see equations
(S7.5)–(S7.7) in the electronic supplementary material.

Various ways to estimate the location of the concave corner in an effort to improve upon the
first-order estimate y1st,cross already given in equation (4.1), now present themselves. Based on the
definition of ζ+ ≡ (1 − y)/(tinj/2), we can obtain by tracking the vertical location of a given injected
material point tinj over time up to its intersection with the concave corner, an estimate of the y
location of the corner. We denote this by yinter

cross, i.e. the value of the matching point determined by
this intersection, and it turns out to be

yinter
cross = 1 − (tinj/2) ζ+cross(tinj). (6.6)

Here, ζ+cross(tinj) is obtained as already mentioned by tracking tinj on the upper region using
equations (5.6)–(5.7), until its location coincides with the lower region given by equation (5.8).
The value of ζ+cross(tinj) determined here will not agree perfectly with the expression obtained
via a small tinj expansion for ζ+cross (see equation (S7.2) in the electronic supplementary
material), although agreement should be good when tinj is sufficiently small. We can combine
this expression for yinter

cross versus tinj with an expression for time at cross-over t = tinj/(1 − ψcross)
versus tinj, this latter expression again not agreeing perfectly with the Taylor-expanded form given
in (6.2). Despite these small discrepancies, a parametric representation of the cross-over y versus
time t can now be obtained by varying tinj. A slightly different estimate for the second-order
vertical location of the concave corner over time t can be obtained by combining equation (2.10)
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Table 1. Parameters for equations (6.1), (S7.1)–(S7.3), (S7.5)–(S7.7) (given in the §S7 in the electronic supplementary material)
and (6.7).

ψcross,0 ψcross,1 A+cross,0 A+cross,1 ζ+cross,0 ζ+cross,1 Ξ+cross,0 Ξ+cross,1

0.9431 0.4608 4.94 16.11 16.52 81.64 20.15 211.28

Across,0 Across,1 ζcross,0 ζcross,1 Ξcross,0 Ξcross,1

1.1784 −0.0528 0.9397 −0.1686 0.2733 −0.0257
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

with a small t expansion for ζcross in equation (S7.6), obtaining

y2nd,cross ≈ 1 −
(

t
2

)
ζcross,0 −

(
t2

2

)
ζcross,1. (6.7)

In the limit of sufficiently small t, this should agree with what (6.6) predicts, but is rather
simpler to evaluate. Provided we can determine ζcross,1 (the value of ζcross,0 being already known
from the literature [27]; see also table 1), we can estimate the second-order position of the concave
corner over time. Predictions for how second-order effects perturb not only the concave corner
but also material point trajectories are discussed in the next section.

7. Second-order matching between upper and lower regions
In this section, we determine the effect of selecting a small but finite time upon the evolution
of the upper region of the front, and how the matching point between the lower and the upper
region moves with time. Recall that we are working with second-order accuracy in time, in the
sense that we have included an order t2 correction (newly derived here for the upper region,
but already given by [27] in the case of the lower region) to compute vertical location y, and
an order t5/2 expression in time (newly derived in the present work) to compute the horizontal
position x or ξ of a material point, with a consistent order of accuracy in time for both upper and
lower regions. After suitable rescaling, this is given by equations (5.2) and (5.3) for the upper
region, and equation (5.4) for the lower region. To measure the concave corner location over
time, we use equations (5.7) and (5.6) to compute the (Ξ+, ζ+) location of the upper region’s
material points, which is done by fixing tinj (following the trajectory of a specific material point)
and then tracking (parametrically in terms of ψ) the locus swept out by the material point, up
to the matching point with the lower region, with a (Ξ+, ζ+) location given by equation (5.8).
To find the intersection where the two regions meet (see the discussion in §5d), it is sufficient
to focus on a point in the lower region with the same ζ+ value as the material point in the
upper region, and determine the corresponding Ξ+ value via (5.8). This is what is plotted in
figure S2 in §S6 in the electronic supplementary material. When the location of the matching
point is found, however, we can identify which specific material point from the lower region
(identified by the value of Z0 via equation (5.9)) happens to be present there (again see the
discussion in §5d and details in §8). Then trajectories of both upper and lower region material
points can be tracked until their intersection. This is what is plotted here in figure 4. In figure 4,
we see that the matching point is slightly sensitive to tinj. Increasing tinj causes it to shift to the
left (i.e. larger Ξ+) and also slightly downwards (larger ζ+). We also note from figure 4 that
values of Z0 are negative (see more explanation in the electronic supplementary material §S8).
This implies y0 values in excess of unity, i.e. points not actually present on the front initially,
but which instead are extracted from the corner into the lower region as the system evolves.
Although figure 4 only shows two tinj values (tinj → 0 and tinj = 0.01), we have repeated the
calculations for a number of tinj values in the domain tinj ∈ [0, 0.01], determining in each case
the ψ value, namely ψcross, at which these points meet the concave corner (figure 5) and hence
the maximum survival time tmax(tinj), which is also estimated at least for tinj � 1 by equation (6.2)
(figure 6). We can also compute A+, ζ+, and Ξ+ at the concave corner (figure 7a–c), and then
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(by employing equations (5.5)–(5.7)), A, ζ and Ξ values there (figure 7d–f ). These expressions
plotted in figure 7 break similarity by allowing separate dependence on tinj and t, rather than
holding all values fixed at the matching point. At sufficiently small tinj and/or t, we expect
variation in all the aforementioned quantities to be linear in tinj and/or t, as established by
equations (S7.1)–(S7.3) and (S7.5)–(S7.7), respectively (as given in the electronic supplementary
material §S7). Here, we achieve this by focusing first on exceedingly small times tinj ∈ [0, 0.0001],
thereby obtaining parameters for equations (6.1), (S7.1)–(S7.3), (S7.5)–(S7.7) and subsequently for
(6.7), i.e. we obtain firstψcross,0 andψcross,1 using data for tinj ∈ [0, 0.0001], from which we compute
A+cross,0, A+cross,1, ζ+cross,0, ζ+cross,1, Ξ+cross,0 and Ξ+cross,1, and subsequently Across,0, Across,1,
ζcross,0, ζcross,1, Ξcross,0 and Ξcross,1. These values are summarized in table 1. Note that although
Across,0, ζcross,0 and Ξcross,0 can be straightforwardly expressed in terms of A+cross,0, ζ+cross,0 and
Ξ+cross,0 and ψcross,0 (see equations (5.5)–(5.7)), the relations for Across,1, ζcross,1 and Ξcross,1 in
equations (S7.5)–(S7.7) are rather more complex, and these quantities can even have opposite
sign from A+cross,1, ζ+cross,1 and Ξ+cross,1 in equations (S7.1)–(S7.3), as in fact is obtained here
(table 1). How such sign changes can arise is discussed in the electronic supplementary material
SS7. The aforementioned sign changes have the following implication. In a view such as figure 4,
−Ξ+ versus −ζ+, which compares trajectories of material points released at different tinj, we have
already seen that increasing tinj drives the concave corner to the left and downwards, with the
leftward shift being particularly noticeable due to the largeΞ+cross,1 value in table 1. On the other
hand, since ζcross,1 andΞcross,1 are negative, snapshots of the instantaneous front shape at various
times t, using now −ζ versus −Ξ coordinates in a view similar to Figure 3a, would show the
corner shifting upwards and to the right, the upward shift being dominant owing to Ξcross,1 in
table 1 being very small. In addition, the negative value of Across,1 implies that the jump in angle
at the concave corner is less than first-order theory predicts, but since Across,1, like Ξcross,1, is
numerically small in table 1, the shift in jump angle is likewise small compared with the vertical
shift of the corner. The fact that fixing t produces a vertical shift in the corner location, whereas
fixing tinj produces a horizontal shift, indicates how the similarity solution breaks down, i.e. the
solution no longer depends solely on the ratio tinj/t. We now return to consider tinj values in the
domain, tinj ∈ [0, 0.01], instead of the much narrower domain tinj ∈ [0, 0.0001] used to obtain the
data of table 1. In figure 5, we see ψcross as a function of tinj, and it is clear that only for small times
(tinj ≤ 0.002), we can consider the relation for ψcross to be a linear function well approximated by
ψcross ≈ψcross,0 + tinjψcross,1 (given by equation (6.1)), with values of ψcross,0 and ψcross,1 given
by table 1. Nonetheless, at least in the domain of figure 5, we found that as tinj increases, the
matching point ψcross still manages to increase albeit deviating from equation (6.1). The values of
ψcross now affect the behaviour of a number of other quantities (tmax, tinj(min) as well as A+cross,
ζ+cross,Ξ+cross, Across, ζcross andΞcross) as we explain below, with an impact in turn on the corner’s
vertical y coordinate location (as we go on to explain).

(a) Values of tmax versus tinj and tinj(min) versus t
As has been indicated already in §§4 and 6, for a given fixed tinj, we can calculate the maximum
survival times tmax(tinj) (time at which the injected point tinj reaches the concave corner). This
is obtained by equations (S2.2) (as given in the electronic supplementary material) and/or
via an expansion (6.2) and is what figure 6a shows. Equivalently (see figure 6b) for a given
t we can determine the injection time tinj(min) of the earliest injected point still surviving (see
equation (6.3)). From the data in figure 5 and table 1, specifically via the linear approximation of
ψcross in (6.1), we evaluate equations (6.2) and (6.3), as

tmax

tinj
≈ 17.57 + 142.33 tinj (7.1)

and
tinj(min)

t
≈ 0.0569 − 0.0262 t, (7.2)
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Figure 4. Trajectory of fixed material points labelled by tinj in the upper region and fixed material points labelled by Z0 ≡
(1 − y0)/(tinj/2) in the lower region in terms of rescaled vertical and horizontal distances ζ+ andΞ+. Dash-dotted line for
upper region tinj = 0 versus solid line for lower region Z0 ≈ −1.06 (see §S8 in the electronic supplementary material for an
explanation of how to determine this Z0 value). Dotted line for tinj = 0.01 versus dashed line for Z0 ≈ −1.16. The curves are
close to overlapping along almost all the trajectory, although they only intersect at the matching point (Ξ+cross, ζ+cross).
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Figure 5. ψcross as a function of tinj. Solid line: valueψcross of the matching point tracked up to time tinj = 0.01. Dotted line:
linear approximationobtained fromdataup to time tinj = 0.0001,withψcross ≈ψcross,0 + tinjψcross,1 and forψcross,0 ≈ 0.9431
andψcross,1 ≈ 0.4608.
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Figure 6. (a)Maximum survival time, for a given injectedmaterial point. Solid line: tmax/tinj versus tinj, given by equation (S2.2)
(as given in the electronic supplementary material). Dotted line: approximation given by equation (7.1). (b) Minimum injection
time of all surviving material points as a function of time. Solid line: tinj(min)/t versus t, given by equation (S2.1). Dotted line:
approximation given by equation (7.2).

which are also plotted in figures 6a,b, respectively. Overall, equations (7.1) and (7.2) represent, at
least for small time, good approximations to the values of tmax and tinj(min). Note in particular that
tinj(min)/t ≡ 1 − ψcross (see equation (S2.1) in the electronic supplementary material), so the data in
figure 6b mirror those in figure 5.

(b) Values of A+cross, ζ+cross,Ξ+cross, Across, ζcross andΞcross

Using ψcross obtained from figure 5, we can also determine evolution of the orientation
and position of the concave corner over time, by evaluating either equations (5.5)–(5.7) or
equations (5.1)–(5.3) setting also t = tmax(tinj) via figure 6a. The behaviour is as follows (figure 7).
In figures 7a–c, we see how A+cross, ζ+cross and Ξ+cross (i.e. values at the concave corner),
respectively, increase at early times as tinj increases, and then, at slightly larger tinj, are predicted
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Figure 7. Values of variables at the matching point over time tinj or t. Different computations of (a) A+cross, (b) ζ+cross and
(c)Ξ+cross for tinj ≤ 0.01. These are obtained, respectively, by equations (5.5)–(5.7) evaluated atψcross (solid lines), and by
equations (S7.1)–(S7.3) (dotted lines),with parameters as shown in table 1. (d)Across, (e)ζcross and (f )Ξcross, for t = tmax(tinj)=
tinj/(1 − ψcross),with tinj ≤ 0.01,whichareobtained, respectively, by equations (5.1)–(5.3) evaluatedatψcross (solid lines), and
by equations (S7.5)–(S7.7) (dotted lines), with parameters as shown in table 1.

to decrease. By contrast, in figure 7d–f, we see Across, ζcross and Ξcross, respectively, decrease as
time t increases. The implications of these findings for ζcross in particular are discussed next.

(c) Data for the corner’s vertical location
As shown in figure 7e, ζcross decreases with increasing t, which has an important implication:
the vertical location of the concave corner is higher up in y than was predicted at leading order.
Using equation (6.7) for the vertical location of the concave corner over time, along with data from
table 1 fed into equation (S7.6), we can deduce

y2nd,cross ≈ 1 − 0.4698t + 0.0843 t2. (7.3)

This is plotted in figure 8, representing an improvement over and above the formula y1st,cross
given by equation (4.1) (also plotted in figure 8). In this same figure, we also show (obtained
parametrically by varying tinj) values computed for yinter

cross = 1 − (tinj/2)ζ+cross, as given by
equation (6.6), versus t = tmax ≡ tinj/(1 − ψcross(tinj)) as given by equation (S2.2) in the electronic
supplementary material. That this parametric expression for yinter

cross versus t must agree well with
equation (7.3) for sufficiently small t follows from the two curves as seen in figure 7e initially
having the same slope. As t increases though (albeit well beyond the domain plotted in figure 7e)
considerable deviation sets in between yinter

cross and y2nd,cross, and this is what we see in figure 8. This
is mainly associated with the ζ+cross values obtained within equation (6.6) falling well below the
predictions of a small tinj expansion given by equation (S7.2), ultimately leading to yinter

cross values
exceeding y2nd,cross. Moreover, we plot an Eulerian-predicted position of the concave corner, a
numerical result given by [32]

yEulerian = 1 − 0.4635t + 0.0784t2, (7.4)

obtained via interpolation of numerical data, fitted over a time domain t ∈ [0, 2], in a space
domain x ∈ [0, 2], y ∈ [0, 1], where the grid size for the solution variable in the numerical Eulerian
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Figure 8. Vertical y position of the concave corner as a function of time t. (a) Dotted line: first-order solution y1st,cross given by
equation (4.1). Dash-dotted line: second-order solution y2nd,cross givenbyequation (7.3). Dashed line: solution for amaterial point
originally at the top of the lower region y2nd,lower, see equation (2.12). Solid line: Eulerian numerical solution yEulerian, obtained
in time domain t ∈ [0, 2] with a grid spacing of�x =�y = 2.5 × 10−3, and�t adjusted via Courant–Friedrichs–Lewy
condition (CFL) condition [32]. Dense-dotted line: solution yintercross given by equation (6.6). (b) Zoomed view of (a) at later times.
We show via Eulerian versus via the current second-order prediction, the estimated point where material points originally on
the front at time t = 0 start being consumed (at which y2nd,lower moves above the concave corner).

method [32] was �x =�y = 2.5 × 10−3, with the time step �t set via the Courant–Friedrichs–
Lewy condition (CFL) [34]. Over the domain in figure 8, these Eulerian data are evidently close
to y2nd,cross data but further away from the data for yinter

cross. We have also plotted the trajectory
of the topmost point of the lower region y2nd,lower given by equation (2.12), via a second-order
approximation (figure 8). By comparing y2nd,lower with the position of the concave corner obtained
via our y2nd,cross, we can determine that not only are material points from the upper region being
consumed by the concave corner (which follows because tinj(min) = (1 − ψcross)t is an increasing
function of time), but also that material points must initially be extracted from the concave corner
in order to populate the lower region, as early on y2nd,lower is below y2nd,cross. This however
only appears to happen until a certain time, after which points of the lower region start being
consumed by the concave corner. Indeed at a certain time y2nd,lower intersects the concave corner
(figure 8b): all extracted points have now been consumed. So, initially new points are extracted
into the lower region, then those same points are consumed, after which the points originally
present in the lower region start being consumed.

We have currently several different methods to estimate the position of the concave corner,
hence different estimates of when y2nd,lower and the concave corner might coincide.

Via the first-order analytical solution for the corner y1st,cross, compared to y2nd,lower, we could
determine that originally present points start being consumed by the concave corner from time
t ≈ 0.289 at y ≈ 0.864, although this result is likely to be unreliable employing as it does y1st,cross.
Meanwhile the point yinter

cross never coincides with y2nd,lower for any t> 0. However, the second-
order solution for the corner y2nd,cross coincides with y2nd,lower at time t ≈ 1.518 at y ≈ 0.481. On
the other hand, by using the corner location as predicted via the Eulerian method, we determine
that material points originally present in the lower region start being consumed by the concave
corner at time t ≈ 1.416 at y ≈ 0.501 (figure 8b). At the comparatively large times considered here,
there is difference among the various predictions. The difference is unsurprising, since our first-
and second-order analytical solutions are formally small time expansions, so we do not expect
them to be valid all the way up to t = 2. To quantify deviations between the Eulerian data and
the various other solutions that we have derived, we measure the root-mean-square (RMS) error
with respect to the Eulerian data, up to t = 2. The RMS error between yEulerian and y1st,cross turned
out to be 0.1473, between yEulerian and yinter

cross it was 0.1518, and between yEulerian and y2nd,cross
it was 0.0039. This proves that the second-order solution given by equation (7.3) gives a much
better estimate for the concave corner position over time than the first-order solution does, as
expected. In addition, the RMS difference between yEulerian and y2nd,lower was found to be 0.0118,
which is larger than the error between yEulerian and y2nd,cross. The difference between yEulerian and
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y2nd,cross must come from either higher order corrections in time (and hence not captured within
equations (5.1)–(5.3)) or by y2nd,cross) or else truncation error in the numerical scheme used to
obtain yEulerian. Since the difference between yEulerian and y2nd,lower is however larger than this,
we assert that the difference between y2nd,lower and the location of the concave corner is genuine
and not solely due to error in our second-order expansion. Thus, we confirm that we are actually
extracting material points to populate the lower region at early times, but later on, we consume
those extracted points again. However, doubt is still present, regarding the exact time at which
material points originally present on the front start being consumed, as our estimates require
extrapolation out of the t � 1 domain where second-order solutions formally apply.

In summary, we found that our second-order predicted location of the concave corner fits
the Eulerian data reasonably well, at both small times t � 1 and also up to times of order unity.
Nevertheless, for points away from the concave corner, we have not yet demonstrated whether
the position of the Lagrangian material points forming the upper region fit front shape predictions
from the Eulerian numerical data. This will be considered in the next section.

8. Second-order front shape at later times
To check reliability of our second-order results, we compute for a given time t = 1, the front
shape (−Ξ , −ζ ) (figure 9a), as a collection of material points with different tinj all at the same
t, specifically t = 1. Thus, we fix t and vary tinj from tinj(min) to t, by varying ψ , from 0 up to ψcross.
We plot (−Ξ , −ζ ) at both first order (equations (3.4)–(3.5)) and second order (equations (5.2)–
(5.3)) comparing results with the numerical Eulerian data. When t = 1, the first-order theory
predicts tinj(min) = 1 − ψcross,0 ≈ 0.0569, whereas the second-order procedure (i.e. tracking (5.6)–
(5.7) until they match with (5.8)) requires tinj(min) ≈ 0.0997 to achieve matching at t = 1. This is
already outside the domain tinj ∈ [0, 0.01] analysed in §7 and likewise outside the domain in which
we can apply equation (7.2) to estimate tinj given t. A value tinj(min) ≈ 0.0997 when t = 1 implies
ψcross ≈ 0.9003 in order for equations (5.6)–(5.7) and (5.8) to match, which is actually less than
the value of ψcross,0. It follows that ψcross initially increases as tinj increases (as per figure 5),
but for large tinj, it starts to decrease. In addition to front shape data (−Ξ ,−ζ ) as plotted in
figure 9a, we also show, in figure 9b, the orientation angle A versus ζ . For the upper region,
this is given parametrically, in terms of A0(ψ) and ζ0(ψ) (at first order) and A(ψ , t) and ζ (ψ , t)
(at second order), via equations (3.3), (3.4), (5.1) and (5.2). We also plot the lower region angle
A(t) versus ζ (t), which is determined either using equation (2.1) (accurate to order t3/2 in x)
or else via (S3.6) (in the electronic supplementary material; accurate to order t5/2 in x) coupled
with equation (2.11). The upper and lower region predictions are compared with Eulerian data,
although in figure 9b these display oscillations in the neighbourhood of the concave corner, which
are just numerical artefacts [32]. In figure 9a, we see how the self-similar nature of ζ and Ξ ,
present at early times, is broken at a finite time t = 1. Here, we also appreciate how the upper
region given by equations (5.2) and (5.3), intersects the lower region given by equation (5.4), at
ζ (ψcross, t = 1) ≈ 0.5839 and Ξ (ψcross, t = 1) ≈ 0.1627, with ψcross ≈ 0.9003 (horizontal line labelled
{1} in figure 9a). This point corresponds to a y value of yinter

cross at t = 1 (figure 8). Nevertheless, we
extend the second-order solution via a linear extrapolation up to the point where equation (S7.6)
would predict the location of the concave corner (see §S9 in the electronic supplementary material
for details), suggesting instead ζcross(t = 1) ≈ 0.7711 (horizontal line labelled {2} in figure 9a). This
now corresponds to a y value of y2nd,cross at t = 1 (figure 8). Here, we see also that our current
second-order solution for ζ versus Ξ is closer to the Eulerian data than the first-order solution is.
Indeed the dotted curve, corresponding to the upper region via a first-order approximation (ζ0(ψ),
Ξ0(ψ)), finishes even further away, with ζcross,0 ≈ 0.9397 and Ξcross,0 ≈ 0.2733 (values quoted in
table 1; see the horizontal line labelled {3} in figure 9a corresponding to y1st,cross in figure 8),
intercepting the lower region predicted by (4.1) (thick-dotted line). In addition, we see that the
lower region (given by the second-order equation (5.4) at least for parts of the lower region
near the concave corner), is relatively close to the Eulerian solution, more so than first-order
equation (2.9). In figure 9b, we show the orientation angle A versus ζ , highlighting, as in figure 9a,

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

11
 J

an
ua

ry
 2

02
4 



22

royalsocietypublishing.org/journal/rspa
Proc.R.Soc.A477:20200691

...........................................................

(a) (b)

–1.0
–0.4 –0.3 –0.2 –0.1 0

–0.5–z

z

X0 + tX1 versus z0 + tz1 

X0 versus z0 

0
Eulerian data

extrapolation z ≥ zcross
lower region via (5.4)

lower region via (2.10)

z0 + tz1 versus A0 + tA1 

z0 versus A0 

Eulerian data

extrapolation z ≥ zcross
lower region via (S 6)

lower region via (2.10)

{1}

{1}

{2}

{2}

{3}

{3}

–X
0.2 0.4 0.6 0.8 1.0 1.20

0.5

A

1.0

1.5

Figure 9. (a) Front shape (−Ξ ,−ζ ) at time t = 1, via first- and second-order solutions, for upper and lower regions,
compared with Eulerian data. Solid line: Eulerian data. Dash-dotted line: second-order approximation ζ0(ψ ) + t ζ1(ψ )
and Ξ0(ψ ) + tΞ1(ψ ) for the upper region, given by equations (5.2) and (5.3), respectively, up to intersection with the
lower region (dashed line) computed via equation (5.4). At time t = 1, the intersection occurs at ζ (ψcross)≈ 0.5839 with
Ξ (ψcross)≈ 0.1627, horizontal line labelled {1}.We have however computedζ versusΞ further than this (‘×’ line; see §S9 in
the electronic supplementarymaterial for details), up to aζ value obtainedby extrapolating theprediction of equation (S7.6) up
to t = 1,which givesζcross(t = 1)≈ 0.7711 (horizontal line labelled {2}),with a corresponding value ofΞ ≈ 0.2353 (this value
is slightly different from that predicted by extrapolation of equation (S7.7), which gives insteadΞcross(t = 1)≈ 0.2476). Dotted
line: first-order approximationζ0(ψ ) andΞ0(ψ ) for the upper region, given by equations (3.4) and (3.5), up to the intersection
with the lower regionvia equation (2.9) (thick-dotted line),withζcross,0 ≈ 0.9397andΞcross,0 ≈ 0.2733 (horizontal line labelled
{3}). (b) Rescaled front orientation angle A versus rescaled vertical coordinate ζ . Solid line: Eulerian data. Dash-dotted line:
second-order approximation A0(ψ ) + t A1(ψ ) and ζ0(ψ ) + t ζ1(ψ ) for the upper region, given by equations (5.1) and (5.2),
computed at time t = 1 up to the intersection with the lower region (given by equation (5.4)), which occurs at A(ψcross)≈
1.0063 with ζ (ψcross)≈ 0.5839 (vertical line labelled {1}), with ψcross ≈ 0.9003. We have however computed A versus ζ
further than this (‘×’ line; see §S9 in the electronic supplementarymaterial for details), up to a value ofζ (vertical line labelled
{2}) obtained as before by extrapolating equation (S7.6), ζcross(t = 1)≈ 0.7711, and a corresponding value of A≈ 1.1131 (note
that this value is slightly different from that predicted by extrapolation of equation (S7.5), which gives Across(t = 1)≈ 1.1259).
Here, we can also see the lower region computed via equation (5.4) (dashed line) obtained for ζ ≥ ζ (ψcross)≈ 0.5839,
i.e. starting from the vertical line labelled {1}. Dotted line: first-order approximation A0(ψ ) and ζ0(ψ ) for the upper region,
given by equations (3.3) and (3.4), respectively. Thick-dotted line: lower region computed via equation (2.1), for ζ > ζcross,0
(vertical line labelled {3}). We see that {2} agrees better with the Eulerian prediction of the corner location than {1} does.

the second-order matching procedure (vertical line labelled {1} in figure 9b, corresponding to
yinter

cross), data extended up to the concave corner location predicted by equation (S7.6) (vertical line
labelled {2} in figure 9b, corresponding to y2nd,cross), and we also show the intersection between
the two regions via the first-order solution (vertical line labelled {3} in figure 9b, corresponding
to y1st,cross). The value of A(ψcross) ≈ 1.0063 (labelled {1}) in figure 9b is curious. This is so close to
unity that the orientation of the upper and lower regions is nearly parallel, making it possible in
figure 9a to extrapolate the solution of the upper region and still remain close to the lower region.
In a near parallel case like that it is difficult to pinpoint exactly where the intersection between
these regions occurs. This may help to explain why the Eulerian prediction seems to give the
concave corner (with a sudden decrease of A in figure 9b) at a different ζ value, closer to the point
labelled {2} than {1}: we already know from figure 8 that y2nd,cross fits yEulerian better than yinter

cross
does. Despite the subtleties, from figure 9a,b, we see that the current second-order solution fits the
Eulerian data better than the first-order solution does, giving good agreement even up to times of
order unity.

9. Conclusion
We have considered a dimensionless form of the pressure-driven growth model used to predict
the foam front propagation in an oil reservoir. The front has been captured as the region of finely
textured foam of very low mobility, where injected gas meets reservoir liquid. The foam front
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is represented as a curve of negligible thickness, which propagates through the porous medium
due to the pressure difference across it and at the same time is retarded by dissipation. The focus
here was on early time behaviour, such that the distance the front has propagated horizontally
is less than the maximum vertical depth through which it can displace, albeit some of the results
we present are extrapolated beyond that regime. As was shown in previous studies [27,32], the
foam front can be divided vertically into two regions (lower and upper) that intersect in a concave
corner. In this study, we have obtained a second-order solution in time to track the trajectory of
the material points of the upper region of the front, up to the aforementioned concave corner or
matching point between both regions. Obtaining the second-order solution in the upper region
was particularly challenging owing to strong spatio-temporal non-uniformities that are present
there. Our approach was to start with solutions in terms of dimensionless similarity solutions,
but then at second order include corrections showing how those similarity solutions break down.
This obtained an approximation accurate to order t5/2 for the horizontal x location of the material
points of the upper region of the front, and an order t2 accurate approximation for their vertical
y location, in each case, with the same order at which the lower region has been computed. At
any specified time t, a second-order solution predicted the vertical location of the concave corner
higher up than the first-order solution, but very close to the prediction of an independently
obtained Eulerian prediction. We have also proven that initially material points are extracted
from the concave corner to populate the lower region, since the topmost point originally present
on the front at time t = 0 initially moves down faster than the concave corner does, as predicted
via the first- and/or second-order solution obtained in this study. Later on, due to second-order
effects in time, with the downward motion of such material points slowing down over time, the
lower region material points originally on the front eventually reach the concave corner, which
must therefore have consumed any previously extracted material points. Therefore, we can assert
that all points extracted into the lower region are eventually consumed, however, based on the
different approximations that we use, we can actually have different predictions for exactly when
this occurs. The issue is that the time we are trying to identify is already sufficiently long that there
might be some uncertainty whether expanding in time as far as a second-order solution remains
adequate or whether yet a higher order correction is required, which will be challenging in view
of strong spatio-temporal non-uniformities present in the upper region. Nevertheless, with the
new solutions, we were also able to compute the shape of the upper region of the front, which
fitted the Eulerian data even up to times of order unity.
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