Mid- to late Pliocene (3.3-2.6 Ma) global sea-level fluctuations recorded on a continental shelf transect, Whanganui Basin, New Zealand

dc.contributor.authorGrant, G. R
dc.contributor.authorSefton, J. P
dc.contributor.authorPatterson, M. O.
dc.contributor.authorNaish, T. R.
dc.contributor.authorDunbar, G. B.
dc.contributor.authorHayward, B. W.
dc.contributor.authorMorgans, H. E. G.
dc.contributor.authorAlloway, B. V.
dc.contributor.authorSeward, D.
dc.contributor.authorTapia, C. A.
dc.contributor.authorPrebble, J. G
dc.contributor.authorKamp, P. J. J.
dc.contributor.authorMcKay, R.
dc.contributor.authorOhneiser, C.
dc.contributor.authorTurner, G. M.
dc.date2018
dc.date.accessioned2019-07-03T19:32:01Z
dc.date.available2019-07-03T19:32:01Z
dc.date.issued2019-07-03
dc.description.abstractWe present a similar to 900 m-thick, mid- (3.3-3.0 Ma) to late Pliocene (3.0-2.6 Ma), shallow-marine, cyclical sedimentary succession from Whanganui Basin, New Zealand that identifies paleobathymetric changes, during a warmer-than-present interval of Earth history, relevant to future climate change. Our approach applies lithofacies, sequence stratigraphy and benthic foraminiferal analyses to two continuously-cored drillholes integrated with new and existing outcrop studies. We construct a depositional model of orbitally-paced, global sea-level changes on a wave-graded continental shelf. Unlike many previous studies, these shelf sediments were not eroded during sea-level lowstands and thus provide the potential to reconstruct the full amplitude of glacial-interglacial sea-level change. Paleobathymetric interpretations are underpinned by analysis of extant benthic foraminiferal census data and a statistical correlation with the distribution of modern taxa. In general, water depths derived from foraminiferal Modern Analogue Technique (MAT), are consistent with variability recorded by lithofacies. The inferred sea-level cycles co-vary with a qualitative climate record reconstructed from a census of extant pollen and spores, and a modern temperature relationship. A high -resolution age model is established using magnetostratigraphy constrained by biostratigraphy, and the dating and correlation of tephra. This integrated chronostratigraphy allows the recognition of 23 individual sedimentary cycles, that are correlated across the paleo-shelf and a possible "one-to-one" relationship is made to deep-ocean benthic oxygen isotope (delta O-18) records. In general water depth changes were paced by similar to 20 kyr duration between 3.3 and 3.0 Ma, after which cycle duration is similar to 40 kyr during the late Pliocene (3.0-2.6 Ma). This record provides a future opportunity to evaluate the amplitude and frequency of global, Pliocene glacioeustatic sea-level change, independent of the global benthic delta O-18 record. (C) 2018 Elsevier Ltd. All rights reservedes_ES
dc.formatPDFes_ES
dc.identifier.citationQuaternary Science Reviews, Vol. 201, 241-260, 2018
dc.identifier.doi10.1016/j.quascirev.2018.09.044es_ES
dc.identifier.urihttp://repositoriodigital.uct.cl/handle/10925/1937
dc.language.isoenes_ES
dc.sourceQuaternary Science Reviewses_ES
dc.titleMid- to late Pliocene (3.3-2.6 Ma) global sea-level fluctuations recorded on a continental shelf transect, Whanganui Basin, New Zealandes_ES
dc.typeArtículo de Revistaes_ES
uct.catalogadorpopes_ES
uct.comunidadRecursos Naturaleses_ES
uct.disciplinaGeofísicaes_ES
uct.facultadFacultad de Ingenieríaes_ES
uct.indizacionISI - Science Citation Indexes_ES
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Grant_Mid_2018.pdf
Size:
444.14 KB
Format:
Adobe Portable Document Format
Description:
Artículo
License bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
803 B
Format:
Item-specific license agreed upon to submission
Description:
Collections