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Abstract: The main object of this paper is to develop an alternative construction for the bimodal
skew-normal distribution. The construction is based upon a study of the mixture of skew-normal
distributions. We study some basic properties of this family, its stochastic representations and
expressions for its moments. Parameters are estimated using the maximum likelihood estimation
method. A simulation study is carried out to observe the performance of the maximum likelihood
estimators. Finally, we compare the efficiency of the new distribution with other distributions in the
literature using a real data set. The study shows that the proposed approach presents satisfactory results.

Keywords: bimodal; simulation; skew-normal distribution; stochastic representation

1. Introduction

The skew-normal distribution was introduced by Azzalini [1], typically denoted as
{SN (λ) , λ ∈ R}, with asymmetry parameter λ, so that SN(0) becomes the standard normal
distribution. Hence, Y ∼ SN(λ) has a density function given by

f (y|λ) = 2φ (y)Φ (λx) , y ∈ R (1)

with λ ∈ R and where φ and Φ denote, respectively, the density and distribution functions of the
N (0, 1) distribution. Some well known facts about this distribution are

E (Y) =

√
2
π

λ√
1 + λ2

; Var (Y) = 1− 2λ2

π (1 + λ2)
(2)

√
β1 =

1
2
(4− π)

(
E2 (X)

Var (Y)

)3/2

; β2 = 2 (π − 3)
(

E2 (Y)
Var (Y)

)2

− 3 (3)

where
√

β1 and β2 are asymmetry and kurtosis coefficients, respectively. From (3) it is well known that

− 0.9953 ≤
√

β1 ≤ 0.9953 (4)

0 ≤ β2 ≤ 0.8692. (5)
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Henze [2] developed the stochastic representation for the skew-normal density and computed
its odd moments. The stochastic representation and some more general representations for skew
models are also discussed in Azzalini [3]. Arnold et al. [4] make use of the above results to develop
truncations of the normal model. Pewsey [5] studied inference problems faced by the skew-normal
model with some general results, especially consequences of the singularity of the Fisher information
matrix (FIM) in the vicinity of symmetry. Gupta and Chen [6] developed a goodness of fit test.
Reliability studies for the skew-normal model were developed by Gupta and Brown [7]. Univariate
extensions to the skew-normal model are studied in Arellano-Valle et al. [8], Azzalini [9], Gómez et al.
([10,11]), Venegas et al. [12], etc.

When it is necessary to model data with more than one mode, mixtures of distributions
are always used. The importance of such studies rests on the fact that these models present
computational difficulties due to identifiability problems. One major motivation of this paper
is to develop models than can be seen as alternative parametric models to replace the use
of mixtures of distributions, as these present estimation problems from either classical or
Bayesian points of view ([13,14]). Bimodal distributions generated from skew distributions
can be found in Azzalini and Capitanio [15], Ma and Genton [16], Arellano-Valle et al. [17], Kim [18],
Lin et al. ([19,20]), Elal-Olivero et al. [21], Arnold et al. [22], Arellano-Valle et al. [23],
Elal-Olivero [24], Gómez et al. [25], Arnold et al. [26], Braga et al. [27], Venegas et al. [28],
Shah et al. [29], Gómez-Déniz et al. [30], Esmaeili et al. [31], Imani and Ghoreishi [32],
Maleki et al. [33], etc. The main object of this paper is to study the properties of the bimodal skew-normal
model introduced by Elal-Olivero et al. [21]. In particular, we derive results related to stochastic
representation of the distribution and density function; this makes it simple to derive distributional
moments and inferences by maximum likelihood (ML) estimation, among other quantities. The paper
is organized as follows. Section 2 develops a bimodal normal distribution, its basic properties,
representation, moments and moment generating function. Section 3 develops a skew-normal bimodal
distribution, its basic properties, stochastic representation, moments and moment generating function.
In Section 4, we perform a small scale simulation study of the ML estimators for parameters. A real
data application is discussed in Section 5, which illustrates the usefulness of the proposed model.
Conclusions and future work are presented in Section 6.

2. Preliminaries

2.1. Bimodal Normal Distribution

Definition 1. If the random variable X has density function

f (x) = x2φ(x), x ∈ R (6)

where φ is the N (0, 1) density, we say that X follows a bimodal normal distribution(see Elal-Olivero [24])
which is denoted by X ∼ BN.

Remark 1. If X ∼ BN with f (x) its density, then f (x) is bimodal. This can be verified by noticing that
f ′(x) = x2(−xφ(x)) + 2xφ(x) = xφ(x)(2− x2), and it follows that it reaches its minimum value at x = 0
and maximum value at x = −

√
2 and x =

√
2. Notice that the maximum value is the same; this fact will play

en important role in defining a more flexible model by adding an extra parameter which will control the height at
the modes.

For the sake of completeness, some important results derived in Elal-Olivero [24] are
presented below.

1. If X ∼ BN and FX(t) and MX(t) are the corresponding distribution and the moment generating
functions then
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(a) FX(t) = Φ(t)− tφ(t)
(b) MX(t) = (1 + t2)exp(t2/2)
(c) X2 ∼ χ2

(3)

2. Let X and U be independent random variables with X ∼ χ2
(3) and U such that P[U = 1] = P[U =

−1] = 1
2 . If W =

√
XU then W ∼ BN.

2.2. Bimodal Normal Distribution with Shape Parameter

Definition 2. If random variable X has density given by

f (x|α) =
(

1 + αx2

1 + α

)
φ(x), x ∈ R, α ≥ 0 (7)

where φ is the density of the N (0, 1) distribution, we say that X is distributed according to the bimodal normal
distribution with parameter α which we denote by X ∼ BN(α).

Remark 2. Some basic properties are shown in the following. Under the assumption that X ∼ BN(α) and that
f (x|α) is the density function of X, then

(a) f (x|α = 0) = φ(x)
(b) f (x|α) is symmetric around zero ∀ α ≥ 0
(c) As α→ +∞, then f (x |α)→ BN.
(d) f (x|α) is bimodal ∀ α > 1

2 where x0 =
√

2α−1
α and x1 = −

√
2α−1

α are the points where the density
reaches its maximum.

(e) f (x|α) is unimodal ∀α ≤ 1
2 .

Proposition 1. If W ∼ BN(α) then the cumulative distribution and the moment generating function (MGF),
denoted by FW(t) and MW(t) respectively, are given by:

1. FW(t) = Φ(t)− αt
1+α φ(t);

2. MW(t) =
(

1 + αt2

1+α

)
exp(t2/2).

Proof. Follows directly from the corresponding definitions.

The next result presents a stochastic representation for the BN(α) distribution.

Proposition 2. Let X and Y be independent random variables such that X ∼ BN and Y ∼ N(0, 1).

If W =
√

α
1+α X +

√
1

1+α Y then W ∼ BN(α).

Proof. Using moments definition,

MW(t) = E[exp(tW)]

= E

[
exp

{
t

(√
α

1 + α
X +

√
1

1 + α
Y

)}]
= MX

(√
α

1 + α
t
)

MY

(√
1

1 + α
t

)

=

(
1 +

αt2

1 + α

)
exp

{
αt2

2(1 + α)

}
exp

{
t2

2(1 + α)

}
=

(
1 +

αt2

1 + α

)
exp(t2/2),

which agrees with the MGF of BS(α) derived above.

Proposition 3. Let W ∼ BN(α). Then for k = 1, 2, . . . the moments are given by: µ2k−1 = E
[
W2k−1

]
= 0

and µ2k = E
[
W2k

]
=
(

1+α(2k+1)
1+α

)
∏k

j=1(2j− 1).

Proof. Follows directly from moment definition.
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Hence, the kurtosis coefficient is given by β2 = 3(1+5α)(1+α)
(1+3α)2 − 3. Recall that the kurtosis coefficient is

given by

β2 =
µ4 − 4µ1µ3 + 6µ2

1µ2 − 3µ4
1

(µ2 − µ2
1)

2
− 3,

given that the even moments are zero and µ2 = 1+3α
1+α and µ4 = 3+15α

1+α , which proves the result.

Remark 3. Considering that the BN(α) model is unimodal for α ∈ [0, 0.5], Table 1 shows the variation for the
kurtosis coefficient as parameter α ranges the interval.

Table 1. Kurtosis values for BN(α) model.

α Kurtosis

[0, 0.5] [−0.48, 0]

3. Bimodal Asymmetric Distribution

We start by dealing first with the extension of the ordinary normal bimodal distribution.

3.1. One-Parameter Bimodal Skew-Normal Distribution

Definition 3. If the random variable X is distributed according to the density function

f (x|λ) = 2x2φ(x)Φ(λx), x ∈ R, λ ∈ R (8)

then we say that it is distributed according to the bimodal skew normal distribution with parameter λ which we
denote by X ∼ BSN(λ).

Figure 1 depicts examples of the bimodal skew-normal (BSN) distribution given in Equation (8)
for different values of parameter λ.
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Figure 1. Density BSN(λ) with parameter λ = 0.5 (left) and λ = −0.5 (right).

Proposition 4. Let X ∼ BSN(λ), then X2 ∼ χ2
(3).
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Proof. Let Y = X2, then, for y ≥ 0, it follows that

FY(y) = P[Y ≤ y] = P[X2 ≤ y] = P[−√y ≤ X ≤ √y] = FX(
√

y)− FX(−
√

y).

Differentiating this last expression we conclude the proof by showing that

fY(y) =
1

2
√

y
fX(
√

y) +
1

2
√

y
fX(−

√
y) =

√
yφ(
√

y)[Φ(λ
√

y) + Φ(−λ
√

y)] =
√

yφ(
√

y), y > 0.

Remark 4. The density function f (x|λ) = 2x2φ(x)Φ(λx), x ∈ R behaves like the density function of the
bimodal normal model g(x) = x2φ(x) by the perturbation function h(x) = 2Φ(x). We note that the heights
at the modes for a bimodal symmetric distribution are the same. However, for an asymmetric distribution the
heights at the modes are not the same as shown in the next proposition.

Proposition 5. Let f (x|λ) = 2x2φ(x)Φ(λx), x ∈ R. Moreover, let x0 and x1 (x0 < x1) be the points at
which the function f (x|λ) reaches its the maximum value. Then,
(a) If λ ≥ 0 then f (x0|λ) ≤ f (x1|λ)
(b) If λ ≤ 0 then f (x0|λ) ≥ f (x1|λ).

Proof. If λ = 0 (symmetric case) then f (x0|λ) = f (x1|λ) with x0 = −
√

2 and x1 =
√

2.
Suppose now that λ > 0; it should then be required that x0 < 0 and x1 > 0.

Hence, ∀ x ≥ 0, f (x1|λ) > f (x|λ) and, in particular, f (x1|λ) > f (
√

2|λ). On the other hand,
for the symmetric case, it is known that x2

0φ(x0) ≤ (
√

2)2φ(
√

2) and given that Φ(λx0) <
1
2 < Φ(λ

√
2),

it follows that
f (x0|λ) < f (

√
2|λ) ≤ f (x1|λ).

The case λ ≤ 0 is proved similarly.

Proposition 6. Let X ∼ BSN(λ) , Y ∼ SN(λ) and FX, FY be the distribution functions of the random
variables X, Y, respectively, and fY the density function of Y. Therefore,

FX(t) = FY(t)−
[

t fY(t) +
λb

1 + λ2 φ(t
√

1 + λ2)

]

with b =
√

2
π .

Proof. Let

FX(t) =
∫ t

−∞
2x2φ(x)Φ(λx)dx,

the distribution function of the random variable X ∼ BSN(λ). Integrating by parts, with u = xΦ(λx)
and dv = xφ(x), it follows that du = (λxφ(λx) + Φ(λx))dx and v = −φ(x), so that

FW(t) = 2
(
−tφ(t)Φ(λt) +

1
2

FY(t)
)
+ 2

∫ t

−∞
λxφ(x)φ(λx)dx

= −2tφ(t)Φ(λt) + FY(t)−
(

λb
1 + λ2

)
φ(t
√

1 + λ2)

= FY(t)−
[

t fY(t) +
λb

1 + λ2 φ(t
√

1 + λ2)

]
.
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Proposition 7. Let X ∼ BSN(λ) and Y ∼ SN(λ) with MGF MX , and MY, respectively. Then,

MX(t) = (1 + t2)MY(t) + btδ(2− δ2)exp
(

t2(1− δ2)

2

)

with b =
√

2
π and δ = λ√

1+λ2 .

Proof. We have
MX(t) = E[exp(tX)] =

∫ ∞

−∞
exp(tx)2x2φ(x)Φ(λx)dx

Integrating by parts, with u = 2exp(tx)xΦ(λx) and dv = xφ(x), it follows that
du = 2exp(tx) [λxφ(λx) + Φ(λx) + txΦ(λx)] dx and v = −φ(x) so that

MX(t) =
∫ ∞

−∞
2exp(tx)φ(x) [λxφ(λx) + Φ(λx) + txΦ(λx)] dx

= (1 + t2)MY(t) +

(
bλt√

(1 + λ2)3
+

bλt√
1 + λ2

)
exp

(
t2

2(1 + λ2)

)
= (1 + t2)MY(t) + btδ(2− δ2)exp

(
t2(1− δ2)

2

)
.

3.2. Two-Parameter Bimodal Skew-Normal Distribution

Definition 4. If the density function of a random variable X is such that

f (x|λ, α) = 2
1 + αx2

1 + α
φ(x)Φ(λx), x ∈ R, λ ∈ R, α ≥ 0 (9)

then we say that X is distributed as the bimodal skew-normal distribution(see Elal-Oliviero et al. [21]) with
parameters λ and α, which we denote by X ∼ BSN(λ, α). Figure 2 depicts examples of the BSN distribution
given in Equation (9) for different values of parameters λ and α.
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Figure 2. Density function for BSN(λ, α) with λ = 0.5 and α = 3 (left); λ = −0.5 and α = 3 (right).

Remark 5. It is already known that changes in parameter λ lead to changes in values (heights) of the density of
the BSN(λ) model, that is, in f (x|λ) = 2x2φ(x)Φ(λx). By incorporating the extra parameter α in the density
f (x|λ, α) = 2

(
1+αx2

1+α

)
φ(x)Φ(λx), corresponding to the BSN(λ, α) model, as α ranges in the interval [0, ∞]

the density changes from unimodal to bimodal, and vice versa, with great flexibility.

As we mentioned in the introduction, the BSN model was introduced by Elal-Olivero et al. [21]
and used for the Bayesian inference. Now we observe that we have constructed it based on a mixture
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of two distributions; below we study some of its properties, carry out a simulation study to see the
behavior of the ML estimators and present an application to a real data set.

Proposition 8. Let X ∼ BSN(λ, α), so that the following properties hold:

(a) If λ = 0 then X ∼ BN(α)
(b) If λ→ ∞ then X ∼ Hal f BN(α)
(c) If α = 0 then X ∼ SN(λ)
(d) If α→ ∞ then X ∼ BSN(λ)
(e) Let W ∼ BSN(λ, α) , X ∼ χ2

(1), Y ∼ χ2
(3) and U = W2. Then,

fU(w) =

(
1

1 + α

)
fX(w) +

(
α

1 + α

)
fY(w).

Proof. For w ≥ 0, it follows that

FU(w) = P[U ≤ w] = P[W2 ≤ w] = P[−
√

w ≤W ≤
√

w] = FW(
√

w)− FW(−
√

w),

which upon differentiation leads to:

fU(w) =
1

2
√

w
fW(
√

w) +
1

2
√

w
fW(−

√
w)

=
1√
w

(
1 + αw
1 + α

)
φ(
√

w)
[
Φ(λ
√

w) + Φ(−λ
√

w)
]

=

(
1

1 + α

)
fX(w) +

(
α

1 + α

)
fY(w).

(f) Let Y ∼ SN(λ) , X ∼ BSN(λ) and W ∼ BSN(λ, α). Then

fW(x) =
(

1
1 + α

)
fY(x) +

(
α

1 + α

)
fX(x).

Proof.

fW(x) =
(

1
1 + α

)
2φ(x)Φ(λx) +

(
α

1 + α

)
2x2φ(x)Φ(λx) =

(
1

1 + α

)
fY(x) +

(
α

1 + α

)
fX(x).

We note that the density for the BSN(λ, α) model can be seen as a mixture between the SN(λ)

and BSN(λ) models.

Proposition 9. Let W ∼ BSN(λ, α), Y ∼ SN(λ) and FW and FY be the distribution function for the random
variables W and Y respectively and fY(·) the density function Y. Then,

FW(t) = FY(t)−
α

1 + α

[
t fY(t) +

λb
1 + λ2 φ(t

√
1 + λ2)

]
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Proof. Let FX be the distribution function of the random variable X, where X ∼ BSN(λ). Then,
the result follows by noticing that

FW(t) =

(
1

1 + α

) ∫ t

−∞
2φ(x)Φ(λx)dx +

(
α

1 + α

) ∫ t

−∞
2x2φ(x)Φ(λx)dx

=

(
1

1 + α

)
FY(t) +

(
α

1 + α

)
FX(t)

=

(
1

1 + α

)
FY(t) +

(
α

1 + α

) [
FY(t)−

(
t fY(t) +

λb
1 + λ2 φ

(
t
√

1 + λ2
))]

= FY(t)−
α

1 + α

[
t fY(t) +

λb
1 + λ2 φ(t

√
1 + λ2)

]
.

Proposition 10. Let W ∼ BSN(λ, α) and Y ∼ SN(λ), and let, MW and MY be the moment generating
functions for the random variables W and Y, respectively; then,

MW(t) = MY(t) +
α

1 + α

[
t2MY(t) + δbt(2− δ2)exp

(
t2(1− δ2

2

)]
,

with MY(t) = E[exp(tY)] = 2Φ(δt)exp
(

t2

2

)
, b =

√
2
π and δ = λ√

1+λ2 .

Proof. The result follows by noticing that

MW(t) =

(
1

1 + α

) ∫ t

−∞
exp(tx)2φ(x)Φ(λx)dx +

(
α

1 + α

) ∫ t

−∞
exp(tx)2x2φ(x)Φ(λx)dx

=

(
1

1 + α

)
MY(t) +

(
α

1 + α

)
MX(t)

=

(
1

1 + α

)
MY(x) +

(
α

1 + α

) [
(1 + t2)MY(t) + btδ(2− δ2)exp

(
t2(1− δ2)

2

)]
= MY(t) +

α

1 + α

[
t2MY(t) + δbt(2− δ2)exp

(
t2(1− δ2

2

)]
.

Remark 6. The properties for the BSN(λ, α) model presented next follow from general properties of the
f (z) = 2 f0(z)G(w(z)) model presented in Azzalini [3] where f0 is a symmetric (around zero) density function,
G is a unidimensional (symmetric) distribution function such that G′ exists and w(·) is an even function.

1. A stochastic representation for the BSN(λ, α) model. Let X ∼ BN(α) and Y ∼ N(0, 1) be independent
random variables and define

W =

{
X if Y < λ X
−X if Y ≥ λX.

Then W ∼ BSN(α, λ).
2. Invariance perturbation property.

If W ∼ BSN(λ, α) and Z ∼ BN(α) then |X| d
= |Z| are identically distributed.

Remark 7. The moments of the BSN(λ, α) model can be computed easily, separating even from odd moments.

1. Considering anti-perturbation invariance, the even moments of X and Z are the same, so that µ2k =

E[X2k] = E[Z2k] =
(

1+α(2k+1)
1+α

)
∏k

j=1(2j− 1) with k = 1, 2, 3, . . . .
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2. For the odd moments, considering that Y ∼ SN(λ), it follows that:

µ2k−1 = E[X2k−1] =
1

1 + α
E[Y2k−1] +

α

1 + α
E[Y2k+1]

with k = 1, 2, 3, . . . .
where the odd moments E[Y2k+1] can be computed using derivations in Henze [2], leading to:

E[Y2k+1] =
bδ(2k + 1)!
(2 + 2λ2)k

k

∑
ν=0

ν!(2λ)2ν

(2ν + 1)!(k− v)!

with k = 0, 1, 2, 3, . . . .

If we denote by
√

β1 and β2 the asymmetry and kurtosis coefficients, respectively, then:

√
β1 =

µ3 − 3µ1µ2 + 2µ3
1

(µ2 − µ2
1)

3
2

and β2 =
µ4 − 4µ1µ3 + 6µ2

1µ2 − 3µ4
1

(µ2 − µ2
1)

2
,

where µk = E(Xk), with k = 1, 2, 3, 4 are as given by

µ1 =
bδ

(1 + α)(1 + λ2)
[(1 + 2α)λ2 + 3α + 1], µ2 =

1 + 3α

1 + α
,

µ3 =
bδ

(1 + α)(1 + λ2)2 [(2 + 8α)λ4 + (5 + 20α)λ2 + 15α + 3] and µ4 =
3 + 15α

1 + α
.

Representing the asymmetry for specific values of α and λ by
√

β1 = A(α, λ), then the following
relation holds: A(α, λ) = −A(α,−λ).

Tables 2 and 3 show asymmetry and kurtosis values for different values of α and λ.

Table 2. Possible values of the standardized skewness coefficient.

λ

α 0 0.5 1 1.5 2 5 10 50 100 ∞

0 0.0000 0.0239 0.1369 0.3003 0.4538 0.8510 0.9556 0.9936 0.9949 0.9953
0.5 0.0000 −0.1648 −0.0617 0.1411 0.3069 0.6282 0.6935 0.7157 0.7164 0.7167
1 0.0000 −0.3161 −0.2517 −0.0229 0.1624 0.4797 0.5355 0.5537 0.5543 0.5545

1.5 0.0000 −0.4119 −0.3789 −0.1275 0.0779 0.4045 0.4559 0.4722 0.4727 0.4728
2 0.0000 −0.4771 −0.4689 −0.1983 0.0258 0.3642 0.4128 0.4277 0.4282 0.4283
3 0.0000 −0.5600 −0.5878 −0.2869 −0.0311 0.3299 0.3748 0.3879 0.3883 0.3884
5 0.0000 −0.6444 −0.7149 −0.3740 −0.0733 0.3221 0.3624 0.3732 0.3735 0.3736

10 0.0000 −0.7223 −0.8390 −0.4497 −0.0900 0.3510 0.3853 0.3929 0.3931 0.3932
50 0.0000 −0.7969 −0.9648 −0.5145 −0.0743 0.4287 0.4539 0.4570 0.4571 0.4571
100 0.0000 −0.8072 −0.9827 −0.5225 −0.0688 0.4446 0.4681 0.4705 0.4705 0.4705
∞ 0.0000 −0.8177 −0.0012 −0.5305 −0.0621 0.4625 0.4842 0.4857 0.4857 0.4857
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Table 3. Possible values of the standardized kurtosis coefficient.

λ

α 0 ±0.5 ±1 ±1.5 ±2 ±5 ±10 ±50 ±100 ±∞

0 3.0000 3.0060 3.0617 3.1759 3.3051 3.7053 3.8232 3.8673 3.8687 3.8692
0.5 2.5200 2.7015 2.8741 2.9361 2.9760 3.0847 3.1132 3.1233 3.1237 3.1238
1 2.2500 2.6043 2.9357 2.9645 2.9361 2.9016 2.9014 2.9017 2.9018 2.9018

1.5 2.1074 2.5869 3.0642 3.0787 2.9987 2.8720 2.8579 2.8538 2.8537 2.8537
2 2.0204 2.5920 3.1946 3.2032 3.0804 2.8836 2.8612 2.8548 2.8546 2.8545
3 1.9200 2.6169 3.4159 3.4233 3.2319 2.9301 2.8984 2.8897 2.8894 2.8893
5 1.8281 2.6620 3.7139 3.7304 3.4436 3.0049 2.9658 2.9560 2.9557 2.9556

10 1.7513 2.7204 4.0663 4.1060 3.6930 3.0833 3.0411 3.0322 3.0319 3.0319
50 1.6843 2.7904 4.4864 4.5692 3.9787 3.1393 3.1012 3.0967 3.0966 3.0966

100 1.6755 2.8011 4.5514 4.6424 3.0212 3.1393 3.1064 3.1029 3.1029 3.1028
∞ 1.6667 2.8123 4.6199 4.7198 3.0653 3.1453 3.1105 3.1082 3.1082 3.1082

The parameter λ produces asymmetry in the symmetric BSN(α) model and, in particular when
α > 1

2 , the asymmetry is reflected in the change of height of the modes of the symmetric bimodal model.
The following proposition shows the identifiability of the model.

Proposition 11. The BSN(λ, α) model is identifiable.

Proof. Let λ = λ0 fixed. We will prove that if α1 6= α2 then f (x, α1, λ0) 6= f (x, α2, λ0), for all x ∈ R.
Let us assume, for a contradiction, that f (x, α1, λ0) = f (x, α2, λ0), for all x ∈ R and λ0 fixed. Thus,
after some algebraic procedures, we have that (α1 − α2)(x2 − 1) = 0, for all x ∈ R. In consequence,
α1 = α2 is a contradiction of our assumption.

To prove that f is an injective function with respect to parameter λ, we use an analogous procedure,
which concludes the proof.

Below we show some properties involving conditional distributions and their relations with the
model introduced in this paper.

Proposition 12. If U|V = λ ∼ BSN(λ, α) and V ∼ BN(α). Then U ∼ BN(α).

Proof. The proof follows by noticing that

fU(u) =
∫ ∞

−∞
2

1 + αu2

1 + α
φ(u)Φ(λu)

(
1 + αλ2

1 + α

)
φ(λ)dλ

=
1 + αu2

1 + α
φ(u)

∫ ∞

−∞
2
(

1 + αλ2

1 + α

)
φ(λ)Φ(λu)dλ =

(
1 + αu2

1 + α

)
φ(u).

Corollary 1. If U|V = λ ∼ SN(λ) and V ∼ BN(α), then U ∼ N(0, 1).

Proposition 13. Let U|V = λ ∼ BSN(λ, α) and V ∼ BN(α). Then V|U = u ∼ BSN(u, α).

Proof.

fV|U(v) =
2
(

1+αu2

1+α

)
φ(u)Φ(vu)

(
1+αv2

1+α

)
φ(v)(

1+αu2

1+α

)
φ(u)

= 2
(

1 + αv2

1 + α

)
φ(v)Φ(vu).
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3.3. Location-Scale Extension

In practical scenarios, it is common to work with the location-scale transformation X = µ + σZ,
where µ ∈ R, σ > 0 and Z ∼ BSN(α, λ), with α ≥ 0 and λ ∈ R. Therefore, the density function for the
random variable X, denoted as X ∼ BSN(µ, σ, α, λ) is given by

fX(x; µ, σ, α, λ) = 2
σ2 + α(x− µ)2

σ3(1 + α)
φ

(
x− µ

σ

)
Φ
(

λ
x− µ

σ

)
, x ∈ R. (10)

Let us assume that x = (x1, x2, . . . , xn)> is a random sample of size n from the distribution
BSN(µ, σ, α, λ). From (10), the log-likelihood function is given as

`(θ) ∝ −3n log(σ)− n log(1+ α)− 1
2σ2

n

∑
i=1

(xi− µ)2 +
n

∑
i=1

log(σ2 + α(xi− µ)2)+
n

∑
i=1

log Φ
(

λ
xi − µ

σ

)
,

where θ = (µ, σ, α, λ)>, which is a continuous function of each parameter. Then, differentiating the
log-likelihood function, we obtain that the elements of the score vector, S(θ) = (Sµ, Sσ, Sα, Sλ)

>, where
Sa = ∂`/∂a, are given by

Sµ =
1
σ2

n

∑
i=1

(xi − µ)− 2α
n

∑
i=1

xi − µ

σ2 + α(xi − µ)2 −
1
σ2

n

∑
i=1

ζ

(
λ

xi − µ

σ

)
,

Sσ = −3n
σ

+
1
σ3

n

∑
i=1

(xi − µ)2 + 2σ
n

∑
i=1

1
σ2 + α(xi − µ)2 −

1
σ2

2

∑
i=1

(xi − µ)ζ

(
λ

xi − µ

σ

)
,

Sα = − n
1 + α

+
n

∑
i=1

(xi − µ)2

σ + α(xi − µ)2 ,

Sλ =
1
σ

n

∑
i=1

(xi − µ)ζ

(
λ

xi − µ

σ

)
,

where ζ(a) = φ(a)/Φ(a). Therefore, the ML estimator of θ̂ is the solution of the system S(θ) = 0,
which must be solved numerically.

4. Simulation Study

In this section we report results of a small scale Monte Carlo simulation study conducted to
evaluate the performance of parameter estimation by ML. Results are based on 1000 samples generated
from the BSN model for several sample sizes. Use was made of the stochastic representation presented
in Remark 6(1) implemented in R software [34]. For each sample generated, the likelihood function
was maximized using the optim function of the R software. Given that the Fisher information matrix
is singular when in the vicinity of symmetry (λ = 0), the use of algorithms such as Fisher-Scoring is
not advisable. We therefore used the Nelder and Mead [35] algorithm, a direct search method that
works satisfactorily for non-differentiable functions.

4.1. Nelder-Mead Method

For each sample size and parameter configuration, the ML estimators were computed leading
to an empirical mean and empirical standard deviation (SD). Results are depicted in Tables 4 and 5.
The main conclusion is that estimation was satisfactorily stable for moderate and large sample sizes.
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Table 4. Empirical means and standard deviations for ML estimators using Nelder-Mead method
(with µ = 0 and σ = 1).

n Parameters Estimations

α λ α̂(SD) λ̂(SD)

25

0 −3 0.1366(0.0840) −2.9256(0.0961)
0 0.0540(0.0329) −0.0028(0.0290)
3 0.1318(0.0854) 3.1444(0.1066)

3 −3 3.1032(0.1155) −2.9445(0.1313)
0 3.1444(0.1055) 0.0141(0.1221)
3 3.0789(0.0915) 3.1387(0.1327)

50

0 −3 0.1235(0.0755) −2.9242(0.0999)
0 0.0472(0.0356) 0.0059(0.0304)
3 0.1182(0.0756) 3.1525(0.1125)

3 −3 3.1063(0.1172) −2.9412(0.1346)
0 3.1504(0.1116) −0.0009(0.1039)
3 3.0822(0.1071) 3.1359(0.1475)

75

0 −3 0.1152(0.0713) −2.9171(0.1015)
0 0.0449(0.0336) 0.0099(0.0312)
3 0.1101(0.0727) 3.1529(0.1136)

3 −3 3.1104(0.1131) −2.9445(0.1420)
0 3.1429(0.1221) 0.0056(0.0910)
3 3.0903(0.1110) 3.1184(0.1533)

Table 5. Empirical means and standard deviations for ML estimators using Nelder-Mead method
(with µ = 0 and σ = 1).

n Parameters Estimations

α λ α̂(SD) λ̂(SD)

100

0 −3 0.1029(0.0681) −2.9175(0.1031)
0 0.0423(0.0344) 0.0116(0.0304)
3 0.1051(0.0697) 3.1535(0.1190)

3 −3 3.1027(0.1151) −2.9356(0.1471)
0 3.1511(0.1141) 0.0000(0.0840)
3 3.0890(0.1138) 3.1243(0.1534)

125

0 −3 0.0693(0.0644) −2.9221(0.1051)
0 0.0394(0.0333) 0.0132(0.0307)
3 0.1009(0.0683) 3.1454(0.1175)

3 −3 3.1041(0.1110) −2.9393(0.1414)
0 3.1511(0.1179) −0.0024(0.0726)
3 3.0913(0.1127) 3.1210(0.1528)

150

0 −3 0.0955(0.0631) −2.9259(0.1023)
0 0.0399(0.0334) 0.0161(0.0305)
3 0.0973(0.0623) 3.1578(0.1177)

3 −3 3.1123(0.1120) −2.9415(0.1405)
0 3.1418(0.1208) −0.0026(0.0703)
3 3.0921(0.1196) 3.1230(0.1546)

200

0 −3 0.0807(0.0527) −2.9239(0.1012)
0 0.0348(0.0305) 0.0197(0.0300)
3 0.0912(0.0614) 3.1470(0.1147)

3 −3 3.1076(0.1123) −2.9329(0.1419)
0 3.1374(0.1216) −0.0035(0.0601)
3 3.0962(0.1233) 3.1087(0.1625)

The simulation study also indicated certain difficulties in the estimation approach for situations
near singularity, see Table 6 below. Table 6 below reports the results.
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Table 6. Percentage of samples that presented convergence problems.

n Percentage

25 21.27%
50 19.64%
75 18.79%

With n ≥ 100, convergence problems were less frequent (≈ 5%), and for n ≥ 200, very few cases
presented problems.

4.2. Fisher-Scoring Method

Table 7 shows simulation results using the Fisher-Scoring algorithm. It was obtained that for
α = 0 and λ > 5 (and λ < −5), for n = 300, non-convergence was down to ≈ 25%. For n = 600
some improvement was noted in the convergence rate although the standard error remained large
as λ increased. Parameter recovery was satisfactory even for moderate sample sizes.

Table 7. Empirical means and standard deviations for ML estimators using Fisher-scoring method
(with µ = 0 and σ = 1).

n Parameters Estimations

α λ α̂(SD) λ̂(SD)

300

0 −3 0.1094(0.2647) −3.2822(0.9544)
0 0.0114(0.1809) 0.0062(39.9985)
3 0.1584(0.2484) 3.3967(0.8984)

3 −3 6.6575(3.3495) −3.6730(2.2947)
0 3.2757(0.9631) −0.0041(0.0592)
3 5.1002(6.3787) 3.4440(11.2287)

400

0 −3 0.0907(0.2379) −3.2340(0.8117)
0 0.0027(0.1858) 0.0009(31.9078)
3 0.1269(0.2220) 3.3254(0.8207)

3 −3 3.4261(2.9044) −3.0799(1.4723)
0 3.1452(0.7781) −0.0011(0.0507)
3 3.9208(3.3462) 3.0523(1.2339)

500

0 −3 0.0871(0.2150) −3.2148(0.7567)
0 0.0002(0.1713) 0.0000(42.6352)
3 0.0959(0.1935) 3.2200(0.6685)

3 −3 3.7597(3.5400) −3.1587(1.6946)
0 3.0440(0.6729) −0.0101(0.0458)
3 4.0856(3.7022) 3.4352(1.6144)

600

0 −3 0.0898(0.1911) −3.1157(0.6401)
0 0.0001(0.1331) 0.0000(27.9890)
3 0.0613(0.1786) 3.1242(0.6368)

3 −3 4.1054(3.5126) −3.2793(1.3546)
0 2.9885(0.5965) 0.0035(0.0417)
3 3.3072(3.1817) 3.0986(1.4427)

5. Application

We next present an application of the BN(µ, σ, α) model to a real data situation in which
comparisons are made with the mixture of normals model and a flexible asymmetric model. We
fitted these models to the variable ultrasound weight, i.e., fetus weight before birth, in 500 observations
of the variable z = b.weight, which is the ultrasound weight (fetal weight in grams). These data are
available at http://www.mat.uda.cl/hsalinas/cursos/2011/R/weight.rar. Given the difference in
weight of males and females in the gestation stage, it is clear that these data present bimodality.

http://www.mat.uda.cl/hsalinas/cursos/2011/R/weight.rar
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The descriptive statistics are given in Table 8, where
√

b1 and b2 denote the asymmetry and
kurtosis coefficients respectively.

The fit of this data set with the BSN model is compared with the fit given by the mixture of two
normals (MN) model, and the flexible skew-normal (FSN) model introduced by Ma and Genton [16],
for which the respective densities are given by:

1. f (z; µ1, µ2, σ1, σ2, p) = p
σ1

φ
(

z−µ1
σ1

)
+ 1−p

σ2
φ
(

z−µ2
σ2

)
2. f (z; µ, σ, α, β) = 2

σ φ
(

z−µ
σ

)
Φ
(

α
(

z−µ
σ

)
+ β

(
z−µ

σ

)3
)

where φ(·) and Φ(·) denote the density and distribution functions of the standard normal distribution,
µ, µ1, µ2, α, β ∈ R, σ, σ1, σ2 ∈ R+ and 0 ≤ p ≤ 1. ML estimation, Akaike’s information criterion (AIC)
(see Akaike [36]) and Bayesian information criterion (BIC) (see Schwarz [37]) are reported in Table 9.

Table 8. Summary statistics for variable fetal weight in grams.

Data n Z̄ S
√

b1 b2

Fetal weight in grams 500 3210.356 834.092 0.071 2.068

Table 9. ML estimates and Akaike’s information criterion (AIC) values for the three models.

Model ML Estimates AIC BIC

BSN µ̂ = 3232.843, σ̂ = 555.657, α̂ = 1.668, λ̂ = −0.023 8095.392 8112.250
MN µ̂1 = 2350.058, µ̂2 = 3632.354, σ̂1 = 381.034, σ̂2 = 647.793, p̂ = 0.343 8107.554 8128.627
FSN µ̂ = 2740.386, σ̂ = 956.663, α̂ = −0.299, β̂ = 0.861 8111.558 8128.416

Notice that the BSN model presents the best fit (smallest AIC and BIC values). This is also
corroborated by Figure 3, which shows the curves corresponding to the fitted models (parameters
estimated using the ML approach), overlaid by the data set histogram.

z

de
ns

ity

0

10−4

2 x 10−4

3 x 10−4

4 x 10−4

5 x 10−4

1000 2000 3000 4000 5000 6000

Figure 3. Models fitted by the ML approach for the fetal weight in grams data set: BSN (solid line),
MN (dashed line) and FSN (dotted line).
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6. Concluding Remarks

In this paper we have studied further properties of the so called BSN model. Stochastic
representations were studied for the model itself and for some sub-models. Derivation of the FIM and
verification of its non-singularity is in preparation and will be the subject of a future paper. Satisfactory
results are obtained for the BSN model in a real data application. Some additional features of the BSN
model are:

• The BSN model presents quite good flexibility in the modes, as shown in Figures 1 and 2.
• The BSN models present no identifiability problems, as shown by Proposition 11.
• The moments, moment generating function, asymmetry and kurtosis coefficients have closed

form expressions.
• The simulation study shows that, although there is a little irregularity in consistency for values

α = λ = 0, the ML estimators are consistent. This point of irregularity can be explained by the
singularity that exists in this point of the information matrix; we will address this situation in a
future work.

• We use a model which is a mixture of non-identifiable normal distributions for comparison with
the BSN model.

• In the application, two statistical criteria for comparing models were used. The two criteria
indicate that the BSN model provides the best fit for these data.
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