Detection of gene expressions in microarrays by applying iteratively elastic neural net

Manakin: UCTemuco XMLUI Project v2

Detection of gene expressions in microarrays by applying iteratively elastic neural net

Mostrar el registro de metadatos del ítem


Ficha descriptiva:


Título: Detection of gene expressions in microarrays by applying iteratively elastic neural net
Handle URI: http://hdl.handle.net/10925/716
Resumen: DNA analysis by microarrays is a powerful tool that allows replication of the RNA of hundreds of thousands of genes at the same time, generating a large amount of data in multidimensional space that must be analyzed using informatics tools. Various clustering techniques have been applied to analyze the microarrays, but they do not offer a systematic form of analysis. This paper proposes the use of Gorban's Elastic Neural Net in an iterative way to find patterns of expressed genes. The new method proposed (Iterative Elastic Neural Net, IENN) has been evaluated with up-regulated genes of the Escherichia Coli bacterium and is compared with the SelfOrganizing Maps (SOM) technique frequently used in this kind of analysis. The results show that the proposed method finds 86.7% of the up-regulated genes, compared to 65.2% of genes found by the SOM. A comparative analysis of Receiver Operating Characteristic (ROC) with SOM shows that the proposed method is 11.5% more effective.
Palabras Claves: Bioinformática - ADN - Redes neuronales
Datos de publicación: Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), Pte.2, 355-363, 2007
Facultad: Facultad de Ingeniería
Carrera: Ingeniería Civil en Informática

Archivos disponibles

Archivos Tamaño Formato Ver Descripción
detection_chacon.pdf 208.9Kb PDF Thumbnail Artículo

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro de metadatos del ítem

Navegar

Mi cuenta