An adaptive finite-volume method for a model of two-phase pedestrian flow

DSpace/Manakin Repository

An adaptive finite-volume method for a model of two-phase pedestrian flow

Show simple item record



Registro de completo:


dc.date 2011
dc.date.accessioned 2012-02-05T21:03:22Z
dc.date.available 2012-02-05T21:03:22Z
dc.date.issued 2012-02-05
dc.identifier.citation Networks and Heterogeneous Media, Vol. 6, Nº 3, 401-423, 2011
dc.identifier.uri https://hdl.handle.net/10925/555
dc.description.abstract A flow composed of two populations of pedestrians moving in different directions is modeled by a two-dimensional system of convectiondiff usion equations. An efficient simulation of the two-dimensional model is obtained by a finite-volume scheme combined with a fully adaptive multiresolution strategy. Numerical tests show the flow behavior in various settings of initial and boundary conditions, where different species move in countercurrent or perpendicular directions. The equations are characterized as hyperbolicelliptic degenerate, with an elliptic region in the phase space, which in one space dimension is known to produce oscillation waves. When the initial data are chosen inside the elliptic region, a spatial segregation of the populations leads to pattern formation. The entries of the diffusion-matrix determine the stability of the model and the shape of the patterns. © American Institute of Mathematical Sciences.
dc.format PDF
dc.language.iso en
dc.source Networks and Heterogeneous Media
dc.subject Flujos multifásicos
dc.subject Modelo de multitudes
dc.subject Leyes de conservación
dc.subject Sistema hiperbólico-elíptico
dc.title An adaptive finite-volume method for a model of two-phase pedestrian flow
dc.type Artículo de Revista
uct.comunidad Ingeniería
uct.facultad Facultad de Ingeniería
uct.carrera Geografía
uct.carrera Ingeniería Civil Industrial
uct.carrera Plan Común Ingeniería
dc.identifier.doi 10.3934/nhm.2011.6.401
uct.catalogador aga
uct.indizacion ISI

Files in this item

Archivos Size Format View
Adaptative_Berres.doc 230.5Kb Microsoft Word View/Open

This item appears in the following Collection(s)

Show simple item record

Browse

My Account